
Graph-Based Dispute Derivations in
Assumption-Based Argumentation

Robert Craven1, Francesca Toni1 and Matthew Williams2

1 Department of Computing / 2 Faculty of Medicine,
Imperial College London

{robert.craven,ft}@imperial.ac.uk, mhw@doctors.org.uk

Abstract. Arguments in structured argumentation are usually defined
as trees. This introduces both conceptual redundancy and inefficiency
in standard methods of implementation. We introduce rule-minimal ar-
guments and argument graphs to solve these problems, studying their
use in assumption-based argumentation (ABA), a well-known form of
structured argumentation. In particular, we define a new notion of graph-
based dispute derivations for determining acceptability of claims under
the grounded semantics in ABA, study formal properties and present an
experimental evaluation thereof.

1 Introduction

Assumption-Based Argumentation (ABA) [1–5] is a well-known framework for
structured argumentation where, in contrast to abstract argumentation [6], ar-
guments and attacks are not primitives but are derived from the rules of a given
deductive system, assumptions and contraries.1 ABA has been applied in sev-
eral settings (e.g. to support medical decision-making [7] and e-procurement [8]).
ABA’s applicability relies on the existence of computational mechanisms, based
on various kinds of dispute derivations [2, 3, 5] that are formally proven to be
correct procedures for conducting structured argumentation under various se-
mantics. For example, [3] proposes GB-dispute derivations (GB-DDs in short)
for determining whether sentences can be justified by grounded sets of arguments
and assumptions.

Dispute derivations rely upon the computation of arguments that can be
understood as trees [4], in a way similar to other frameworks for structured
argumentation (e.g. [9–12]). This introduces both conceptual redundancy and
inefficiency in standard methods of implementation, in that within an argument
different rules for deriving the same conclusion may be used, potentially intro-
ducing unnecessarily points of attack and requiring additional defence efforts.

In this paper, we give a novel computational mechanism for ABA, in the
form of graph-based GB-dispute derivations (gGB-DDs in short), and prove that

1 Work was supported by EPSRC grant EP/J020915/1 (TRaDAr—Transparent Ra-
tional Decisions by Argumentation) and by an Imperial College London Medical
Engineering Kick-Start scheme.

they are correct under the grounded semantics for argumentation, in the same
way that GB-DDs are. However, gGB-DDs avoid the conceptual redundancy
and inefficiency of arguments as trees, by computing rule-minimal arguments,
corresponding to argument graphs, and making sure that only parsimonious sets
of arguments from the grounded set are generated in support of sentences whose
acceptability is being ascertained. In addition to using argument graphs, gGB-
DDs also incorporate a loop-checking mechanism, inspired by that proposed by
[13] for abstract argumentation [6].

In addition to studying theoretical properties of correctness of gGB-DDs, we
also perform an empirical evaluation thereof, by comparing it with an imple-
mentation of standard GB-DDs. We perform two groups of experiments. The
first uses randomly generated frameworks and randomly selected sentences from
them, and the second uses a real-life example of the formalization within ABA
of treatment recommendations for breast cancer. Both sets of experiments show
promise both in terms of completion time for (successful) derivations as well as
termination of (unsuccessful) derivations.

2 Background

ABA frameworks [4] are tuples (L,R,A,):

– (L,R) is a deductive system, with L a set of sentences and R a set of
(inference) rules, in this paper of the form s0 ← s1, . . . , sn, for n > 0 and
s0, s1, . . . , sn ∈ L;

– A ⊆ L is a non-empty set, called the assumptions;
– is a total mapping from A to L; ā is the contrary of a.

In the remainder of the paper, we take as given an ABA framework (L,R,A,).
In ABA, arguments are proofs using rules and ultimately dependent on as-

sumptions [4]:

– a proof for s ∈ L supported by S ⊆ L is a (finite) tree with nodes labelled
by sentences in L or >, where the root is labelled by s and:
• for all non-leaf nodes N (labelled by s0), there is some rule s0 ←
s1, . . . , sn ∈ R s.t. either (i) n = 0 and the child of N is labelled by
> or (ii) n > 0 and N has n children, labelled by s1, . . . , sn respectively;
and

• S is the set of all sentences in L labelling the leaves;
– an argument for s ∈ L supported by a set of assumptions A ⊆ A is a proof

for s supported by A.

For an argument a for s supported by A, claim(a) = s (s is the claim of a) and
support(a) = A.

In ABA, an argument b attacks an argument a iff there is some a ∈ support(a)
s.t. ā = s, where s = claim(b); a set of arguments B attacks a set of arguments
A iff some b ∈ B attacks some a ∈ A.

There are parallel, equivalent notions for sets of assumptions rather than
arguments [3, 14]. A set of assumptions B attacks a set of assumptions A iff
there is some an argument for ā supported by some B′ ⊆ B, for some a ∈ A.
Then a set of assumptions is deemed:

– admissible iff it does not attack itself and attacks every set of assumptions
attacking it;

– complete iff it is admissible and contains all assumptions it can defend (by
attacking all attacks against them);

– grounded iff it is minimally (w.r.t. ⊆) complete.

A sentence s ∈ L is admissible/complete/grounded (optionally, w.r.t. A ⊆ A)
iff there are (i) (respectively) a set of assumptions A ⊆ A s.t. A is admissi-
ble or A ⊆ A′ ⊆ A for some complete/grounded A′ and (ii) an argument a
s.t. claim(a) = s and support(a) ⊆ A.

Several algorithms for determining acceptability of sentences in ABA have
been proposed (e.g. see [2, 3]). Here, we focus on GB-dispute derivations [3] (GB-
DDs in short). Given a selection function (taking a multi-set and returning an
element occurring in it) a GB-DD of a defence set ∆ ⊆ A for a sentence s ∈ L
is a finite sequence of tuples2

〈
P0,O0, D0, C0

〉
, . . . ,

〈
Pn,On, Dn, Cn

〉
where:

P0 = {s}, D0 = A ∩ {s}, O0 = C0 = {}
Pn = On = {}, ∆ = Dn

and for every i s.t. 0 6 i < n, only one σ in Pi or one S in Oi is selected, and:

1. If σ ∈ Pi is selected then
(i) if σ ∈ A, then
Pi+1 = Pi − {σ} Oi+1 = Oi ∪ {{σ}}

(ii) if σ 6∈ A, then there exists some inference rule σ ← R ∈ R s.t. Ci∩R = {}
and
Pi+1 = (Pi − {σ}) ∪R Di+1 = Di ∪ (A ∩R)

2. If S is selected in Oi and σ is selected in S then
(i) if σ ∈ A, then

(a) either σ is ignored, i.e.
Oi+1 = (Oi − {S}) ∪ {S − {σ}}

(b) or σ 6∈ Di and
Oi+1 = Oi − {S} Pi+1 = Pi ∪ {σ}
Di+1 = Di ∪ ({σ} ∩ A) Ci+1 = Ci ∪ {σ}

(ii) if σ 6∈ A, then
Oi+1 = (Oi − {S}) ∪

{
(S−{σ}) ∪R

∣∣σ ← R ∈ R
}

Intuitively, GB-DDs can be seen as games between two (fictitious) players: a
proponent (Pi) and an opponent (Oi), the former accumulating its support-
ing/defending assumptions (Di), the latter being defeated on a number of culprit
assumptions (Ci). Theorem 4.2 in [3] proves that GB-DDs are sound: if there is
a GB-DD of ∆ for s then s is grounded and ∆ is admissible and contained in
the grounded set of assumptions.

2 This definition is adapted from [3] but adopting the convention, when defining
changes in tuples, that omitted elements are unchanged. We will do the same for
gGB-DDs in section 4.

3 Rule-minimal arguments

The notion of argument in ABA enforces a form of relevance (of the support to
the claim), afforded by the notion of tree. However, this notion allows redundan-
cies in arguments, in the sense illustrated by the following example. (Note that
in depicting arguments as trees and (later) graphs, we follow the convention of
letting nodes labelled by the heads of rules appear above nodes labelled by the
sentences in the rules’ bodies; this allows us to omit direction arrows on arcs.)

Example 1. Consider the ABA framework with
R = {p ← b; p ← q, a; q ← p};A = {a, b};
ā = x, b̄ = y. Shown are arguments a1 (left) and
a2 (right) for p, supported by {a, b} and {b} re-
spectively. Argument a1 is (redundantly) using two
different rules to prove the two occurrences of p. y

p p

q a b

p

b

It is clear that such a situation is toxic, in that p has been proved in a certain
way, which depends on p itself (which is then proved in a different way). A less
toxic sort of case, but still involving redundancy, would be if some sentence s
were proved in two different ways in an argument, but without there being one
of those proofs depending on the other (so there would be no directed path from
the two nodes labelled by s). We take the view that both the ‘toxic’ and the
‘merely redundant’ cases are undesirable.

Accordingly, we define a restricted notion of argument, enforcing that, for
every sentence in an argument, the same rules are used to justify the sentence
at all its occurrences. Formally:

Definition 1. An argument a is rule-minimal iff for any two nodes N,N ′ in a
labelled by the same s ∈ L the children of N and N ′ are labelled by the same
elements of L ∪ {>}. y

In example 1, a2 is rule-minimal whereas a1 is not. Note that there are in-
finitely many arguments for p in this example; a2 is the only rule-minimal one.

Rule-minimal arguments may still contain redundancies in their support, as
illustrated by the following example.

Example 2. Consider the ABA framework in ex-
ample 1 but with q ← p in R replaced by q ← b.
Shown are rule-minimal arguments a1 (left) and
a2 (right) for p, supported by {a, b} and {b}
respectively. Here, the support of a1 is non-
minimal, as support(a1) ⊂ support(a2). y

p p

q a b

b

Definition 2. An argument a is support-minimal iff there is no a′ such that
claim(a′)=claim(a) and support(a′)⊂support(a). y

Example 2 shows that rule-minimal arguments may not be support-minimal.
The following example shows that support-minimal arguments may not be rule-

minimal.

Example 3. Consider the ABA framework with R = {p ←
p; p← a};A = {a}; ā = x. Shown are support-minimal argu-
ments a1 (left) and a2 (right) for p, both supported by {a}.
Here, only a2 is rule-minimal. (This is the smallest such ex-
ample; other, less ‘trivial’ ones could be provided.) y

p p

p a

a

Whereas the notion of support-minimal argument is ‘global’, in that to check
whether an argument is support-minimal this needs to be compared with all
other arguments, the notion of rule-minimal argument is ‘local’, in that to check
whether an argument is rule-minimal all that is required is a syntactic check of
the argument. Moreover, every argument can be transformed into a rule-minimal
argument, by means of algorithm 1.3

Algorithm 1 reduce(a: argument)

1: r := 0
2: seen := {}
3: while r 6 rank(a) do
4: nodes := {N ∈ nodes(a) | (rank(N, a) = r) ∧ (label(N, a) ∈ L−A) ∧ (N 6∈ seen)}
5: while nodes 6= {} do
6: N := pickOne(nodes)
7: s := label(N, a)
8: leafTrees := {b ∈ subTrees(a)|(label(root(b)) = s) ∧ ¬∃N ′[N ′ ∈ nodes(b)−

{root(b)} ∧ label(N ′, a)=s]}
9: b := pickOne(leafTrees)

10: for all N ′ ∈ nodes(a) s.t. label(N ′, a) = s ∧ ¬∃X[X ∈path(N ′, root(a), a)∧
label(X)=s] do

11: a := substitute(a, N ′, b)
12: end for
13: seen := seen ∪ {N ∈ nodes|label(N) = s}
14: nodes := nodes− seen
15: end while
16: r := r + 1
17: end while
18: return a

Note that at lines 6 and 9 the algorithm performs non-deterministic choices
(of a node/sentence and of a sub-tree, respectively). By making alternative such

3 Here: rank(N,T) returns the length of the path from N to the root of tree T ;
rank(T) returns the maximum rank of any node in tree T ; path(N,N ′, T) returns
the set of nodes on the (unique) path from N to N ′ (not including N) in tree T ;
substitute(T,N, T ′) takes tree T and replaces the sub-tree rooted at N by tree T ′;
nodes(T), root(T) and subTrees(T) return, respectively, the set of nodes, the root
and the set of sub-trees of tree T ; pickOne(S) chooses a member of S; label(N, a)
returns the label of node N in argument a (this is a member of L or >, see section 2).

choices different arguments can be obtained, as illustrated next.

Example 4. Given argument a1 (left), de-
pending on the choice of sub-tree at line
9, the algorithm may return a2 (middle)
or a3 (right). y

p p p

q r b a

p p

b a

Definition 3. Given a set of arguments A, a reduction of A is a set of argu-
ments B s.t. (i) for each b ∈ B there is an argument a ∈ A s.t. b = reduce(a);
(ii) for each argument a ∈ A there exists an argument b ∈ B s.t. b = reduce(a).y

In example 4, {a2}, {a3}, {a2,a3} are reductions of {a1}.
In general, given an argument a, algorithm 1 ‘reduces’ it to a rule-minimal

argument a′ whose claim is identical to, and whose support is a subset of that
of a, as sanctioned by:

Proposition 1. Let a be an argument for c supported by S. Then a′ = reduce(a)
is a rule-minimal argument for c supported by S′ ⊆ S.

Proof. First, algorithm 1 terminates, since (i) a is finite and thus rank(a) is
finite; (ii) there are finitely many nodes at lines 10, 13; (iii) at every iteration
of the external while loop the set nodes is smaller. Secondly, a′ is a sub-tree of
a with the same root, and so the same claim and support as a. Thirdly, trivially
a′ is an argument in the ABA sense. Finally, by construction, each sentence in
a′ is proven by only one rule. y

Then, directly from proposition 1:

Proposition 2. (i) For every rule-minimal argument for s supported by A there
exists an argument of s supported by A. (ii) For every argument for s supported
by A there exists a rule-minimal argument of s supported by A′ ⊆ A. y

Clearly, it is computationally advantageous, when determining whether a sen-
tence is acceptable under some semantics, to focus on rule-minimal arguments:
there are fewer of them, they are smaller, and they have smaller supports. We
define new notions of acceptability w.r.t. rule-minimal arguments, and prove
they are equivalent to the original notions.

To extend notions of acceptability for sets of assumptions when focusing on
rule-minimal arguments, we define a variant of the notion of attack between sets
of assumptions:

Definition 4. A set of assumptions B rule-minimally attacks a set of assump-
tions A iff there is some rule-minimal argument for ā supported by some B′ ⊆ B,
for some a ∈ A.

A set of assumptions is

– rule-minimally admissible iff it does not rule-minimally attack itself and it
rule-minimally attacks every set of assumptions rule-minimally attacking it;

– rule-minimally complete iff it is rule-minimally admissible and contains all
assumptions it can defend (by rule-minim. attacking all rule-min. attacks
against them);

– rule-minimally grounded iff it is minimally (w.r.t. ⊆) rule-minimally com-
plete. y

Directly from proposition 2:

Proposition 3. Let A ⊆ A be a set of assumptions. A is admissible/complete/
grounded iff A is rule-minimally admissible/complete/grounded (respectively). y

Thus, when deciding whether a set of assumptions is acceptable, one can restrict
attention to rule-minimal arguments.

As in the case of standard ABA, we can lift notions of acceptability at the
assumption level to the sentence level:

Definition 5. s ∈ L is rule-minimally admissible/complete/grounded (option-
ally, w.r.t. A ⊆ A) iff there are (i) (respectively) a set of assumptions A ⊆ A
s.t. A is rule-minimally admissible or A ⊆ A′ ⊆ A for some rule-minimally
complete/grounded A′ and (ii) a rule-minimal argument a s.t. claim(a) = s and
support(a) ⊆ A. y

Then, directly from proposition 3:

Proposition 4. s∈L is rule-minimally admissible/complete/grounded/iff s is
admissible/complete/grounded (respectively). y

Rule-minimally acceptable sets of assumptions may still contain redundan-
cies, as illustrated by the following example.

Example 5. Consider the ABA framework with R = {(1) p ← s, r, a; (2) s ←
r, a; (3) r ← a; (4) p ← b; (5) q ← d; (6) q ← e}; A = {a, b, c, d, e}; ā = x, b̄ =
y, c̄ = q, d̄ = p, ē = p. (The rules are numbered for later use.) Then c is (rule-
minimally) admissible, complete and grounded, w.r.t. {c, a, b}, {c, a} and {c, b}.
{c, a} and {c, b} determine a more parsimonious set of arguments, in that p is
supported by {a} (in the case of {c, a}) or {b} (for {c, b}). y

Definition 6. A set of arguments A is parsimonious iff there exist no two dif-
ferent sub-trees a, b of any (possibly different) arguments in A such that the root
of a and b is labelled by the same sentence. y

Every argument in a parsimonious set is rule-minimal. In example 5, the set of
assumptions {c, a} and {c, b} support parsimonious arguments, whereas {c, a, b}
does not.

It is easy to see that in order to determine acceptability of sentences, it
suffices to focus on parsimonious arguments:

Proposition 5. A sentence s is rule-minimally admissible/complete/grounded
iff there are (i) a parsimonious set of arguments A and (ii) a ∈ A with claim(a) =
s s.t. (respectively) A is admissible or A ⊆ A′ for some complete/grounded A′. y

The relevance of this will be seen in the following section. When constructing
a set A of proponent arguments (according to the algorithm in Definition 8)
starting from some claim s, we can restrict attention to parsimonious A; this is
a further efficiency and removal of redundancy.

4 Graph-based GB-dispute derivations

A graph-based GB dispute derivation gradually derives justifications for sen-
tences in a way guaranteed to produce rule-minimal arguments which are parsi-
monious and grounded. They rely upon arguments defined as graphs, as follows:

Definition 7. A graph-based argument is an acyclic directed graph (V,E) with
V ⊆(L ∪ {>}), and for any s∈V :

– if s∈(L−(A∪{>})), then for a unique rule s←s1,. . ., sm in R, (i) if n=0,
then {x|(s, x) ∈ E}={>}; or (ii) if n>0, then {x|(s, x) ∈ E}={s1, . . . ,sn};

– if s∈V −(L − (A ∪ {>})), then there are no outgoing edges from s in E;
– there is a unique c ∈ (V ∩L) (the claim) s.t. there is no edge (s, c) in E and

there is a path (c,. . ., s) for any s∈V . y

It is evident that argument graphs can be ‘unravelled’ into rule-minimal argu-
ments, as illustrated below for example 5:

p

s

r

a

p

s r a

r a a

a

⇒

gGB-DDs work over tuples (Pi,Oi, Di, Ci, JsPi, JsOi,Atti, Gi), where Pi are
the sentences the proponent has yet to prove; Oi contains tuples (X, Js,C) repre-
senting partially-completed opponent arguments: C is the claim, X the sentences
supporting the argument yet to be proved, and Js a set of justifications–pairs
(s,R) where s is a sentence and R is either the body of a rule used to justify s in
the context of (X, Js,C), or ∗ if s ∈ A; Di and Ci are as in GB-dispute deriva-
tions (see section 2); JsPi contains justifications (pairs (s,R), as above) for the
proponent arguments, and JsO contains the justification triples for the opponent
arguments; Atti contains points of attack between proponent and opponent argu-
ments, and Gi records the dependency graph among sentences, grown gradually
during the derivation.

Definition 8. Given a selection function, a gGB-DD of defence set ∆ and di-
alectical structure (JsP, JsO,Att) for a sentence s ∈ L is a finite sequence of tu-
ples (P0,O0, D0, C0, JsP0, JsO0,Att0, G0), . . . , (Pn,On, Dn, Cn, JsPn, JsOn,Attn,
Gn), where

P0 = {s}, D0 = A ∩ {s},O0 = C0 = JsP0 = JsO0 = Att0 = G0 = {}
Pn = On = {}, ∆ = Dn, JsP = JsPn, JsO = JsOn,Att = Attn

and for every i s.t. 0 6 i < n, only one σ in Pi or one (X, Js,C) in Oi is
selected, and:

1. If σ ∈ Pi is selected then

(i) if σ ∈ A then

Pi+1 = Pi − {σ}
Oi+1 = Oi ∪ {({σ̄}, {}, σ̄) | ¬∃R((σ̄, R) ∈ JsOi}

JsPi+1 = JsPi ∪ {(σ, ∗)}
Atti+1 = Atti ∪ {(σ̄, σ)}
Gi+1 = Gi ∪ {(σ̄, σ)}, and Gi+1 is acyclic

(ii) if σ 6∈ A, then (a) there is some (σ,R) ∈ JsPi, and Pnew is {}; or,
if not, (b) there exists some σ ← R ∈ R, Pnew is R—and (in both cases)
Ci ∩R = {} and

Pi+1 = (Pi − {σ}) ∪ Pnew

Di+1 = Di ∪ (R ∩ A)

JsPi+1 = JsPi+1 ∪ {(σ,R)}
Gi+1 = Gi ∪ {(x, σ) | x ∈ R}, and Gi+1 is acyclic

2. If (X, Js,C) is selected in Oi and σ is selected in X then

(i) if σ ∈ A, then:

(a) σ is ignored, i.e. Oi+1 = (Oi − {(X, Js,C)}) ∪ {(X − {σ}, Js ∪
{(σ, ∗)},C)}.

(b) or σ 6∈ Di and if ∃R((σ̄, R) ∈ JsPi) then Pnew = {}; otherwise,
Pnew = {σ̄} and

Pi+1 = Pi ∪ Pnew

Oi+1 = Oi − {(X, Js,C)})
Di+1 = Di ∪ ({σ̄} ∩ A)

Ci+1 = Ci ∪ {σ}
JsOi+1 = JsOi ∪ {(X − {σ}, Js ∪ {(σ, ∗)},C)}
Atti+1 = Atti ∪ {(σ̄, σ)}
Gi+1 = Gi ∪ {(σ̄, σ)}, and Gi+1 is acyclic

(ii) if σ 6∈ A then

– if ∃R((σ,R) ∈ Js), let Onew = {((X − {σ}) ∪ R, Js,C)} and let
Gi∗ = Gi;

– otherwise let Onew = {((X −{σ})∪R, Js∪{(σ,R)},C) | (σ ← R) ∈
R} and let Gi∗ = Gi ∪ {(x, σ) | ∃(σ ← R) ∈ R, x ∈ R} and Gi∗ is
acyclic.

then: Oi+1 = Oi ∪ Onew and Gi+1 = Gi∗. y

P O D C JsP JsO

0 {c} {} {c} {} {} {}
1 {} {({q}, {}, q)} {c} {} {(c, ∗)} {}
2 {} {({d}, {(q, 4)}, q), {c} {} {(c, ∗)} {}

({e}, {(q, 5)}, q)}
3 {p} {({e}, {(q, 5)}, q)} {c} {d} {(c, ∗)} {({}, {(d, ∗), (q, 4)}, q)}
4 {s, a} {({e}, {(q, 5)}, q)} {a, c} {d} {(c, ∗), (p, 1)} {({}, {(d, ∗), (q, 4)}, q)}
5 {a, r} {({e}, {(q, 5)}, q)} {a, c} {d} {(c, ∗), (p, 1), (s, 2)} {({}, {(d, ∗), (q, 4)}, q)}
6 {a} {({e}, {(q, 5)}, q)} {a, c} {d} {(c, ∗), (p, 1), (r, 3), (s, 2)} {({}, {(d, ∗), (q, 4)}, q)}
7 {} {({e}, {(q, 5)}, q), {a, c} {d} {(a, ∗), (c, ∗), (p, 1), {({}, {(d, ∗), (q, 4)}, q)}

({x}, {}, x)} (r, 3), (s, 2)}
8 {} {({x}, {}, x)} {a, c} {d, e} {(a, ∗), (c, ∗), (p, 1), (r, 3), (s, 2)} {({}, {(d, ∗), (q, 4)}, q), ({}, {(e, ∗), (q, 5)}, q)}
9 {} {} {a, c} {d, e} {(a, ∗), (c, ∗), (p, 1), (r, 3), (s, 2)} {({}, {(d, ∗), (q, 4)}, q), ({}, {(e, ∗), (q, 5)}, q)}

Table 1. Sample gGB-DD for c in example 5.

As an illustration, consider table 1 (Atti and Gi are omitted for lack of
space). The opponent has two arguments attacking the claim c, introduced in
step 2 when the incomplete argument for q was developed using rules (4) and
(5) (in example 5). The proponent attacks opponent argument ({d}, {(q, 4)}, q)
using rule (1) for p (step 4). Then, when the proponent must attack the second
opponent argument ({e}, {(q, 5)}, q), at step 8, the algorithm notices that ē = p
has already been argued for by the proponent (at case 2(i)(b) in definition 8, the
condition which sets Pnew to {}), so an argument for p is not developed again
(avoiding the possibility that it would be developed using an alternative rule). It
is here that we ensure parsimoniousness. The acyclicity check on Gi ensures that
this avoidance of recomputation is sound; the final graph Gn is shown below.

c

q

d

e

p

sr

a

x

Definition 9. Let J be a set of pairs of the form (s,R); if s ∈ A then R is ∗;
otherwise there exists some rule s ← R ∈ R. The arguments determined by J
are those constructible from the ABA framework (L′,R′,A′, ′):
L′ = {s | ∃(s′, R) ∈ J [s = s′ ∨ (R 6= ∗ ∧ s ∈ R)]};
R′ = {s← R | (s,R) ∈ J, R 6= ∗};
A′ = {a | (a, ∗) ∈ J}; ā′ = a, for all a ∈ A. y

It is apparent that where, for any s, there is at most one pair (s,R) in JsP, then
the set of arguments determined by JsP is parsimonious. Furthermore, the set
JsP can be more compactly visualized as a graph, whose nodes are the sentences
mentioned in JsP, and where there is an edge (s, r) iff there is a pair (s,R) ∈ JsP

s.t. r ∈ R. For the gGB-DD in table 1, this visualization is shown below, together
with the dialectical relationship with opponent arguments from JsO:

P

O 1

O 2
a

p
r s

c

d

e

q

q

In the diagram, the proponent’s justifications are shown in the large box on the
left; the opponent’s arguments are the two small boxes on the right; and attacks
are dashed lines.

Proposition 6. If there is a gGB-DD for s then there is a GB-DD for s with
the same defence set.

Proof. (Sketch: the details are omitted for reasons of space.) The structure of
gGB-DDs precisely mirrors that presented in section 2 for GB-DDs; the sets Pi

are the same, and the members (X, Js,C) of the sets Oi have components X
which precisely correspond to the members of Oi in GB-DDs. However, because
of the checks at steps 1(ii), 2(i)(b) and 2(ii) of gGB-DDs, some steps of a GB-
DD may be omitted in a gGB-DD. So, given a gGB-DD (P0,O0, D0, C0, JsP0,
JsO0,Att0, G0), . . . , (Pm,Om, Dm, Cm, JsPm, JsOm,Attm, Gm) there is a GB-
DD (P ′

0,O′
0, D

′
0, C

′
0), . . . , (P ′

n, O′
n, D

′
n, C

′
n) with (m 6 n), such that to each

step (Pi,Oi, Di, Ci, JsPi, JsOi,Atti, Gi) there corresponds a step of the GB-DD
(P ′

j ,O′
j , D

′
j , C

′
j) with P ′

j = P, O′
j = {X | ∃(X, Js,C) ∈ Oi}, D′

j = Di, C
′
j = Ci–

and s.t. the corresponding steps fall into the same order. y

The table below shows the GB-DD corresponding to the gGB-DD of table 1.
The numbers of corresponding steps from the gGB-DD are in brackets.

P O D C
0 [0] {c} {} {c} {}
1 [1] {} {{q}} {c} {}
2 [2] {} {{d}, {e}} {c} {}
3 [3] {p} {{e}} {c} {d}
4 [4] {s, a} {{e}} {a, c} {d}
5 [5] {a, r} {{e}} {a, c} {d}
6 [6] {a} {{e}} {a, c} {d}
7 [7] {} {{e}, {x}} {a, c} {d}

8 {p} {{x}} {a, c} {d, e}
9 {s, a} {{x}} {a, c} {d, e}
10 {a, r} {{x}} {a, c} {d, e}
11 {a} {{x}} {a, c} {d, e}

12 [8] {} {{x}} {a, c} {d, e}
13 [9] {} {} {a, c} {d, e}

Proposition 6 also holds in the reverse, ‘completeness’ direction, with the mod-
ification that the defence set may be a subset of that for the corresponding
GB-DD.

Proposition 7. If there is a gGB-DD for s with defence set ∆, then s is
grounded, ∆ is admissible, and there is ∆′ ⊇ ∆ s.t. ∆′ is grounded.

Proof. By proposition 6, there is a GB-DD for s with defence set ∆; then from
Theorem 4.2 of [3], the result is immediate. y

Proposition 8. If there is a gGB-DD for s with defence ∆, then the arguments
determined by JsP are parsimonious.

Proof. By construction, there are no two pairs (s,R1), (s,R2) in JsP with R1 6=
R2. Thus the arguments determined by JsP can only be parsimonious. y

5 Experiments

To compare the original GB-DDs to the gGB-DDs of section 4, we implemented
both in Prolog. The implementation of the original algorithm (proxdd) used its
(equivalent) variant presented in [5], which records the arguments as well as the
attack relationships between them as they are constructed. This is appropriate
for purposes of comparison, as our algorithm and its implementation (grapharg)
record the rule-minimal justification structure as it proceeds.4

In comparing the results of the two implementations, it is important to set
the same search strategy in each case. Each algorithm has various choice points
(indicated by words such as ‘selected’, or disjunctions), and to compare like with
like it is necessary that the selection be done using the same criteria.

Another fact we had to consider was that, for many strategies, the original
GB-DDs quickly used up all of Prolog’s memory resources. (For such strategies,
the gGB-DD implementation, grapharg, typically terminated or timed out.) We
therefore used strategies for which memory was typically not exceeded for both
implementations.

For the first set of experiments, we randomly generated ABA frameworks
(L,R,A,) to use as experimental data. The random generation followed a very
simple procedure of choosing contraries to assumptions at random, and popu-
lating rule bodies with sentences randomly. The proportions of assumptions to
non-assumptions in the language; the minimum and maximum number of sen-
tences per rule body; the minimum and maximim number of rules per sentence
serving as rule head—these and similar parameters can all be supplied by the
user. In our experiments, the mean language size (|L|) was 126 sentences, and
the mean number of rules (|R|) was 178, with a mean of 3.6 sentences in the
body of each rule. For each randomly-selected framework, we randomly selected
10 sentences from the language of the framework to use as queries. We tested

4 Both implementations are freely available for download from
http://www.doc.ic.ac.uk/~rac101/proarg/.

each query-framework pair for both implementations, on the same strategy, with
a time-out of two minutes. In all cases we asked the implementations to find all
possible solutions. The results, for 65 frameworks, are presented in tabular form
below (times in secs.):

grapharg proxdd

Av. time (both complete) 0.447 6.618
Av. time (overall) 54.716 87.413

percentage timeout 40.871 71.208

We recorded the mean time for query-framework pairs where both implementa-
tions completed (first row), as well as the mean time for query-framework pairs
that may have reached the chosen time-out of two minutes.

Our algorithm shows a marked improvement in the mean times taken to
answer queries, in the two cases where both implementations completed, and
when one of them reached time-out. The percentage of time-outs itself was much
lower for gGB-DDs. These results are encouraging and confirm our theoretical
evaluation.

We were surprised by the comparisons on number of solutions found: in the
cases where both implementations completed, the same number of solutions were
discovered. One might have expected that the guarantee of rule-minimality in
the case of the graph-based algorithm would have meant that fewer solutions
would have been produced by the graph-based algorithm, with the non-rule-
minimal ones being cut. The fact that the figures are the same in each case
is an indication that the ABA frameworks our random-generator produced did
not exhibit the scope for non-rule-minimal arguments—for the chosen queries, at
least. Finally, the very high number of total solutions found overall for the graph-
based algorithm (13,653 vs 217) is owed to one particular randomly-generated
query-framework pair, for which grapharg found 13,427 solutions (proxdd found
none before time-out). If that particular query-framework pair is left out of
account, then the comparison comes to 226 vs 217.

For the experiments based on the breast-cancer study, we used data originally
published in [15], and which we have used in the context of experiments on
parallel argumentation in [7]. The ABA frameworks represent an ontology of
drugs and treatments, and recommendations from 57 papers referred to in the
National Cancer Institute’s breast cancer guideline [16], as well as hypothetical
patient data. In half of the frameworks, we introduced random preferences over
the recommendations from the various clinical trials; this simulates the weights
which patients or doctors might give to the various clinical trials from which the
recommendations are drawn. Further, in half of the frameworks, we flattened the
ontology to a set of Prolog facts, rather than retaining the original combination
of Prolog facts and rules. The ABA resulting frameworks consist of an average
of 947 rules (|R|), and 11 queries were made per framework—each query asking
whether a particular regime of chemotherapy or drugs was recommended.

We again made these experiments using our graph-based implementation,
grapharg, and compared it to the existing best implementation of the standard
algorithm, proxdd. The results are shown in tabular form below.

grapharg proxdd

Av. time (both complete) 0.575 3.827
Av. time (overall) 23.630 46.015

percentage timeout 18.182 36.364

The results here are broadly consistent with those obtained for the randomly-
generated frameworks in the previous round of experiments, and indicate a simi-
lar, increased performance and utility in the case of graph-based dispute deriva-
tions.

6 Conclusion

We proposed an equivalent but ‘leaner’ form of ABA, based on rule-minimal,
graph-based arguments, and gave a variant of an existing mechanism for compu-
tation under the grounded semantics in ABA, namely GB-dispute derivations [3]
(GB-DDs in short), to restrict computation to graph-based arguments only. We
have proven theoretically that our graph-based GB-dispute derivations (gGB-
DDs in short) are sound, under the grounded semantics, and conducted a number
of experiments suggesting that our gGB-DDs are more efficient than standard
GB-DDs, both in terms of completion time and terminating computations.

Like others, e.g. [11], we are concerned with ‘efficient’ arguments, but, rather
than imposing minimality of support of arguments, which needs to be ascertained
‘globally’, we propose rule-minimality for arguments, which can be ascertained
‘locally’. Our notion of rule-minimality is related to the definition of argument
structure (Def. 3.1) in [10].

Our notion of gGB-DD borrows from the work of [13] the use of a graph whose
acyclicity is an essential prerequisite of success. However, whereas [13] provide
a computational machinery for abstract argumentation [6], we have focused on
structured argumentation in the form of ABA. Moreover, [13] consider several
argumentation semantics; we have focused on the grounded semantics.

There is an established completeness result for the derivation algorithm for
GB-DDs, from [3], which holds in the case of p-acyclic ABA frameworks. This
result is inherited for the algorithms defined in the present paper, and it is
straightforward to show the inheritance. We have omitted this for reasons of
space in the current paper.

In future work, it would be interesting to see whether our notions of rule-
minimal and graph-based arguments could be applied in other frameworks for
structured argumentation, e.g. those of [9–12].

We conducted preliminary experimentation with an implementation of our
gGB-DDs and shown that it moderately, but consistently, improves upon an
implementation of standard GB-DDs. We plan to further this experimentation
to a larger pool of frameworks and queries.

Like us, [7] also focus on obtaining more efficient computational support for
ABA in the context of a medical application, but by resorting to parallelisation,
where different strategies lead to different threads of execution. It would be
interesting to see how parallelisation could further quicken our implementation.

We have focused on the computation of argumentation under the grounded
semantics. We have already defined variants of our gGB-DDs to compute the ad-
missible semantics, and implemented that in grapharg. We plan also to define
and implement a variant for the ideal semantics; using the parametric method-
ology of [5] this should be straightforward.

References

1. Bondarenko, A., Dung, P.M., Kowalski, R., Toni, F.: An abstract, argumentation-
theoretic approach to default reasoning. Artificial Intelligence 93(1-2) (1997) 63–
101

2. Dung, P., Kowalski, R., Toni, F.: Dialectic proof procedures for assumption-based,
admissible argumentation. Artificial Intelligence 170 (2006) 114–159

3. Dung, P., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation.
Artificial Intellgence 171(10–15) (2007) 642–674

4. Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In Rah-
wan, I., Simari, G.R., eds.: Argumentation in AI. Springer (2009) 25–44

5. Toni, F.: A generalised framework for dispute derivations in assumption-based
argumentation. Artificial Intelligence (2012) In Press.

6. Dung, P.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77 (1995) 321–357

7. Craven, R., Toni, F., Hadad, A., Cadar, C., Williams, M.: Efficient support for
medical argumentation. In Brewka, G., Eiter, T., McIlraith, S.A., eds.: Proc. 13th
International Conference on Principles of Knowledge Representation and Reason-
ing, AAAI Press (2012) 598–602

8. Matt, P.A., Toni, F., Stournaras, T., Dimitrelos, D.: Argumentation-based agents
for eprocurement. In Berger, M., Burg, B., Nishiyama, S., eds.: Proceedings of the
7th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2008)-
Industry and Applications Track. (2008) 71–74

9. Modgil, S., Prakken, H.: A general account of argumentation with preferences.
Artificial Intelligence (2012) In Press.

10. Garćıa, A.J., Simari, G.R.: Defeasible logic programming: An argumentative ap-
proach. Theory and Practice of Logic Programming 4(1-2) (2004) 95–138

11. Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press (2008)
12. Amgoud, L.: The outcomes of logic-based argumentation systems under preferred

semantics. In Hüllermeier, E., Link, S., Fober, T., Seeger, B., eds.: Scalable Un-
certainty Management - 6th International Conference, SUM 2012. Proceedings.
Volume 7520 of LNCS., Springer (2012) 72–84

13. Thang, P.M., Dung, P.M., Hung, N.D.: Towards a common framework for dialecti-
cal proof procedures in abstract argumentation. Journal of Logic and Computation
19(6) (2009) 1071–1109

14. Toni, F.: Reasoning on the web with assumption-based argumentation. In Eiter,
T., Krennwallner, T., eds.: Reasoning Web. Semantic Technologies for Advanced
Query Answering. 8th International Summer School. Proceedings. Volume 7487 of
LNCS. Springer (2012) 370–386

15. Williams, M., Hunter, A.: Harnessing Ontologies for Argument-Based Decision-
Making in Breast Cancer. In: ICTAI (2), IEEE Computer Society (2007) 254–261

16. NCI: Breast Cancer PDQ (Stage I, II, IIA, and operable IIIC Breast Cancer)
(2007)

