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Abstract. Reinforcement Learning (RL) suffers from several diffi-
culties when applied to domains with no obvious goal state defined;
this leads to inefficiency in RL algorithms. In this paper we consider
a solution within the context of a widely-used testbed for RL, that
of RoboCup Keepaway soccer. We introduce Argumentation-Based
RL (ABRL), using methods from argumentation theory to integrate
domain knowledge, represented by arguments, into the SMDP al-
gorithm for RL by using potential-based reward shaping. Empirical
results show that ABRL outperforms the original SMDP algorithm,
for this game, by improving the optimal performance.

1 INTRODUCTION

Reinforcement Learning (RL) is a paradigm which allows agents to
learn actions they should perform in a given environment, by consid-
ering the various rewards and punishments which result from their
courses of action. RL has been widely studied in computer science
and AI, but also in other disciplines such as economics and game the-
ory where the notion of rational action is central. Typically, however,
the rewards agents receive relate to goal states defined in the particu-
lar problem area or environment, and the fact that non-goal states are
unrewarded leads to two kinds of problems for RL algorithms [5]:

• the temporal credit assignment problem—that of determining
which part of the behaviour deserves the reward; and

• the slower convergence problem—back-propagation of the goal
reward over the state space is time-consuming.

In this paper we address these problems within the context of
RoboCup Keepaway soccer, regarded as a testbed for single-agent
as well as multi-agent RL [11]. Keepaway is played between N
‘keepers’, who must keep possession of a ball, and N − 1 ‘tak-
ers’, who must try to take it. As in most existing Keepaway re-
search [11, 12, 14], our work will study the behaviour of keepers.
Although at any stage of the game only one keeper makes decisions
and learns behaviour, the task involves several independent and au-
tonomous agents, so this decision-making process can still be viewed
as a multi-agent learning problem [11].

To solve the temporal credit assignment and slower convergence
problems, we introduce heuristics into the RL algorithms. Exist-
ing approaches to incorporating high-level domain knowledge into
RL [5, 6] require an explicit goal state, but many application
domains—Keepaway included—have no such easily-definable goal
state, so an approach that can use expert knowledge of the domain in
the absence of goals is called for. Our method uses value-based argu-
mentation frameworks [1], a form of computational argumentation.
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The latter studies the concept of a good set of arguments in favour of
a given proposition or action [4], and in value-based argumentation
the reasons for adopting a set of arguments are supplemented by ref-
erence to values which the actions may promote. Argumentation is
regarded as a powerful tool in inference, decision-making and deci-
sion support, but has never, to our knowledge, been used to improve
the performance of RL. We define plausible values for Keepaway
soccer and propose argumentation-based RL (ABRL), which incor-
porates value-based argumentation into the Markov Decision Process
(MDP) algorithms [13] for RL, with the help of reward shaping tech-
niques [8, 15]. We focus on the Keepaway game in the present paper
because it facilitates evaluation, although we see potential for the ap-
proach described to be extended to other applications of RL.

Section 2 contains background, in Section 3 we describe our ap-
proach, and Section 4 presents experimental results. In Section 5 we
describe related work and in Section 6 we conclude.

2 BACKGROUND

We first describe the application domain of Keepaway soccer. Then
we survey the model of RL, MDP, which is the basis of our approach,
and describe ‘reward shaping’, which we use to include domain
knowledge into MDP. Finally, we give the fundamentals of value-
based argumentation, incorporated into MDP in our approach.

2.1 RoboCup soccer Keepaway

Keepaway is played by N keepers, who try to keep possession of
the ball, and N − 1 takers, who attempt to gain possession of the
ball, in a fixed court. An episode terminates when the ball goes off
court or the takers get the ball; a new episode starts immediately
with all the players reset. In the rest of this paper, we consider a
configuration with 3 keepers and 2 takers playing in a 20× 20 court;
at the beginning of each episode, the 3 keepers are each in a different
corner, and the takers are all in the remaining corner, with keeper 1
(K1) having possession of the ball. (The techniques proposed in this
paper are, however, independent of the game configurations.)

The objective of the learning algorithm in Keepaway is to deter-
mine the best action in specific situations, as the game develops.
However, in the RoboCup simulation platform, only primitive ac-
tions and coordinate positions of each robot are provided; with only
this information, designers have had difficulty in incorporating high-
level learning algorithms. As a result, macro-actions and state vari-
ables are proposed by Stone et al. [12]. Macro-actions include:

• HoldBall(): stay still while keeping possession of the ball;
• PassBall(i): kick the ball directly towards keeper Ki;
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• GetOpen(): move to a position free from takers and open for a
pass from the ball’s current position;

• GoToBall(): intercept a moving ball or move to a stationary ball.

These macro-actions can in turn be combined into further macro-
actions. For instance, keepers not in possession of the ball can be
required to execute the Receive() action which is defined as:

• Receive(): if a teammate has the ball, or can get to it faster than
this keeper can, then GetOpen(); otherwise, GoToBall(). Repeat
until this keeper has possession of the ball or the episode ends.

In the following we use Ki to represent the ith closest keeper to the
ball—so that K1 is the keeper in current possession. The learning is
restricted to K1, and we further confine it to the macro-action Hold-

Ball() and to PassBall(2)ThenReceive (i.e. PassBall(2) then Re-

ceive()) and PassBall(3)ThenReceive (similar to the previous one).
In the RoboCup simulation platform, which action is best will de-

pend on the state of the court. This is represented by a vector of
thirteen values, shown in Table 1. The list can be naturally gener-

Value name Description

dist(K1, C) dist(K2, C)
dist(K3, C)

Distance between keepers and the
centre of the court.

dist(T1, C) dist(T2, C) Distance between takers and the
centre of the court.

dist(K1,K2) dist(K1,K3) Distance between K1 and the other
two keepers.

dist(K1, T1) dist(K1, T2) Distance between K1 and the tak-
ers.

Minj∈1,2dist(K2, Tj) Distance between K2 and its clos-
est taker.

Minj∈1,2dist(K3, Tj) Distance between K3 and its clos-
est taker.

Minj∈1,2angle(K2,K1, Tj) The smallest angle between K2 and
the takers with vertex at K1.

Minj∈1,2angle(K3,K1, Tj) The smallest angle between K3 and
the takers with vertex at K1.

Table 1. State variables and their meaning (3 keepers and 2 takers)

alised to additional keepers and takers, leading to a linear growth in
the number of state variables.

2.2 MDP algorithms

MDP is one of the most widely used mathematical models of RL and
has several variants [13]. An MDP is a tuple (S,A, T,R), where S
is the state space, A is the action space, T (s, a, s′) = Pr(s′|s, a) is
the probability of moving from state s to state s′ by executing action
a, and R(s, a, s′) gives the immediate reward r received when action
a is taken in state s, moving to state s′.

However, in most real environments, the transition probabilities
and reward functions are not known. In these cases, on-policy learn-
ing algorithms are used, which apply temporal-difference updates to
propagate information about values of states, V (s), or state-action
pairs, Q(s, a). These updates are based on the difference of the two
temporally different estimates of a particular state or state-action
value. The SARSA(λ) [13] algorithm is such an on-policy learning
algorithm. We use the Semi-MDP (SMDP) version of the SARSA(λ)
algorithm with replacing eligibility traces, shown as Algorithm 1, be-
cause it allows us to deal with partially observable environments, as
required by our application domain. In the algorithm, α is a learning
rate parameter and λ is a discount factor governing the weight placed
on the future. The value e represents eligibility traces, which stores

Algorithm 1 Learning algorithm: SARSA(λ) with replacing eligibil-
ity traces (adapted from [13])
1 Initialise Q(s, a) arbitrarily for all states s and actions a
2 Repeat (for each episode):
3 Initialise e(s, a) = 0 for all s and a
4 Initialise current state st
5 Choose action at from st using the policy derived from Q
6 Repeat until st is the terminal state:
7 Execute action at, observe reward rt and new state st+1

8 Choose at+1 from st+1 using the policy derived from Q
9 δ ← rt + γQ(st+1, at+1)−Q(st, at)
10 e(st, at)← 1
11 For all s, a:
12 Q(s, a)← Q(s, a) + αδe(s, a)
13 e(s, a)← γλe(s, a)
14 st ← st+1; at ← at+1

the credit that previous action choices should receive for current re-
wards, while γ governs how much credit is delivered back to them.
The linear tile-encoding method of [12] we use is suitable for repre-
senting states in in our application domain. The action selection rule
used in line 5 and line 8 is ε-greedy: the action with highest Q(s, a)
value will be selected for a proportion 1−ε of the trials; for the other
ε proportion, actions will be selected randomly.

2.3 Reward shaping

Reward shaping, as a medium to convey domain knowledge into RL,
has been proven to be an effective technique to improve the conver-
gence speed as well as optimality of MDP in both single-agent and
multi-agent RL scenarios [3, 8]. However, despite its effectiveness in
many experiments, if used improperly, reward shaping can also mis-
lead the learning process [9]. To deal with such problems, potential-
based reward shaping has been proposed by Ng et al. [8] as the dif-
ference of some potential function Φ over the current state s and the
following state s′. Wiewiora et al. [15] extended the potential-based
method to the case of shaping functions based on both states and ac-
tions: Φ(s, a). As recommended by Wiewiora et al. [15], look-ahead
advice should be used if the prior knowledge is predominantly state-
based. Since, in the Keepaway application, the domain knowledge
mainly focuses on the state of the court, we will use look-ahead ad-
vice as the reward shaping method. To integrate look-ahead advice
into Algorithm 1, line 9 of the algorithm should be replaced by:

δ ← rt + F (s, a, s′, a′) + γQ(st+1, at+1)−Q(st, at)
where the (shaping) reward F (s, a, s′, a′) is defined as:

F (s, a, s′, a′) = γΦ(s′, a′)− Φ(s, a)
obtained when moving from state s to s′ by action a based on the
difference of potential values Φ between pairs (s, a) and (s′, a′). Φ
should be given according to the specific domain of application.

2.4 Argumentation frameworks

An abstract argumentation framework [4] is a pair (Arg,Att) where
Arg is a set of arguments and Att ⊆ Arg ×Arg is a binary relation
representing the attacks between arguments. We say that a set S ⊆
Arg attacks an argument B when some member of S attacks B. A
set S ⊆ Arg is said to be conflict-free when no member of S attacks
a member (possibly itself) of S.

Using these definitions, semantics of abstract argumentation
frameworks are defined as sets of arguments (extensions), reflecting
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concepts of rational acceptability. Two widely-used semantics are as
follows (given an abstract argumentation framework F = (Arg,Att)):

• S ⊆ Arg is an admissible extension for F iff S is conflict-free, and
S attacks any argument in Arg− S that attacks an argument in S;

• S ⊆ Arg is a preferred extension for F iff S is an admissible exten-
sion, and there is no⊂-larger subset of Arg that is also admissible.

Intuitively, an admissible extension is one whose arguments can
counter-attack any arguments attacking them; and a preferred exten-
sion is an admissible extension that cannot be made any larger, thus
representing a maximally acceptable set of arguments.

In some contexts, particularly involving practical reasoning, the
logical relations between arguments are not enough to decide what
is rationally acceptable, and the values promoted by arguments must
be considered. Value-based argumentation frameworks (VAFs; see,
e.g., [1]) were therefore introduced to model reasoning where dif-
ferent agents face problems of practical rationality, when the agents’
preferences between their values may differ. The key idea of VAFs
is to allow for attacks to succeed or fail, depending on the relative
worth of the values promoted by the competing arguments. Given a
set V of values, an audience is a strict partial order over V ; an au-
dience corresponds to the scale of values of a particular agent. An
audience-specific VAF is a tuple (Arg,Att, V, val,Valpref), where:

• (Arg,Att) is an abstract argumentation framework;
• V is a set of values;
• val : Arg → V gives the value promoted by arguments (denoted,

e.g., A �→ v);
• Valpref, the audience, is a strict partial order over V ; we will typ-

ically write this relation as >v .

The ordering over values, Valpref, within an audience-specific VAF,
allows for the values promoted by a given argument to be taken into
account in the definition of the semantics. The simplification of an
audience-specific VAF of the form above is the abstract argumenta-
tion framework (Arg,Def), where (A,B) ∈ Def iff (A,B) ∈ Att
and val(B) �<v val(A). (A,B) ∈ Def is pronounced ‘A defeats
B’, so that defeat imposes a value-constraint on the relationship
of attack. The definitions of ‘conflict-free’, ‘admissible’, and ‘pre-
ferred’, above, are then adapted to use the relation of defeat instead
of (merely) attack, with semantics of the VAF defined in terms of
extensions of those of its simplification (Arg,Def).

3 ARGUMENTATION IN KEEPAWAY

In this section, we identify arguments representing expert knowledge
of the Keepaway domain (section 3.1), define the notion of domain-
specific value-based argumentation framework (section 3.2) and dis-
cuss how to use it to associate numerical values with actions, feed-
ing into reward shaping for RL (section 3.3). Even though we focus
on the 3-2 Keepaway, the techniques we propose here apply to other
Keepaway settings, or, more generally, to other RL problems, as well.

3.1 Arguments for rewarding rules

In the original SMDP approach for Keepaway [11], the reward is
defined by rt = CurrentTime− LastActionTime. Here, CurrentTime
is the time when a keeper holds the ball or an episode ends, and
LastActionTime is the time when a keeper selected the last action.
So, roughly speaking, this reward system is distance-oriented:
passing the ball to farther keepers is more encouraged. However,

it is clear that the presence of takers should affect this: if a keeper
is far from the one in possession of the ball but very near to both
takers, then the keeper in current possession should pass to the other
keeper, even though he may be nearer. We therefore stipulate that
Ki (i ∈ {2, 3}) is far iff Minj∈1,2dist(Ki, Tj) � L, where L is
a parameter fed as input. Arguments regarding what to do when a
keeper is far can then be formulated:

F2: PassBall(2)ThenReceive IF K2 is far
F3: PassBall(3)ThenReceive IF K3 is far

This rewarding system seems reasonable at first sight: the farther
the target keeper is from takers, the more likely that the ball can
be controlled by the keepers for a longer time. Nevertheless, this
assumes that the ball can be successfully passed to the target
keeper, which is not always so. Take the scenario in Figure 1,
for example. Even though K3 is farther from the takers than

K1

K2K3

T1

T2

θ1

θ2

Figure 1. Example scenario: insufficiency of far arguments

K2, Minj∈1,2angle(K2,K1, Tj)=θ2 is significantly larger than
Minj∈1,2angle(K3,K1, Tj)=θ1. PassBall(2)ThenReceive is
clearly the best choice in this situation as it has lower risk of
interception, but according to the existing arguments F2 and F3,
PassBall(3)ThenReceive will get higher reward. Clearly, some
important factors, e.g., Minj∈1,2angle(Ki,K1, Tj), need to be
taken into account in the rewarding system. We define that Ki

(i ∈ {2, 3}) is open iff Minj∈1,2angle(Ki,K1Tj) � A, where A
is an input parameter acting as an acceptable threshold. We introduce
the additional arguments:

O2: PassBall(2)ThenReceive IF K2 is open
O3: PassBall(3)ThenReceive IF K3 is open

to take better account of situations such as the one in Figure 1.
Another subtle but serious problem is that the reward for Hold-

Ball() is often too small, especially when the takers are far from K1.
For example, in the beginning of each episode, as both takers are
together in a different corner than K1 and they are always chasing
the ball, the best strategy should intuitively be holding the ball until
the takers are close. But given the existing rewarding rule, passing
the ball immediately has higher reward. Because the reward of
passing the ball is always much higher than that of HoldBall(), when
the learning proceeds, the Q(s,HoldBall()) will become smaller
and smaller, leading in turn to to fewer chances for execution of
HoldBall(). To break this vicious cycle, we need additional reward
rules allocating HoldBall() higher rewards. We add the argument:

H: HoldBall() IF True

The fact that the body of this rule is True means that HoldBall() is
the default action, always available to be supported by argument H .

All five arguments above can be viewed as reasons to make dif-
ferent decisions in various, possibly overlapping situations. Take the
scenario in Figure 1 as an example, and suppose that given specific
input values for L and A (defining far and open), K2 is evaluated as
far and open and K3 is far and not open. Then passing to K2 is a rea-
sonable decision because both arguments F2 and O2 provide reasons
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to support it. Similarly, passing to K3 is reasonable because argu-
ment F3 supports it. In addition, HoldBall() can be reasonably cho-
sen since that is the default option. So we face a dilemma in this sce-
nario: different arguments support different actions simultaneously,
but only one action can be selected. To solve this kind of conflict,
we can evaluate the strengths of different arguments in specific situ-
ations, and use this evaluation to rank the actions.

3.2 Argumentation framework

Consider again the scenario illustrated in Figure 1. As discussed
earlier, four arguments hold in this situation: O2, F2, F3 and
H. PassBall(2)ThenReceive is supported by both O2 and F2,
PassBall(3)ThenReceive is supported by F3, whereas HoldBall()

is supported by H. Intuitively, any two arguments that support dif-
ferent actions conflict with one another. The corresponding abstract
argumentation framework is shown in Figure 2 (i). Generically, by

F3

F2 H O2

F3

F2 H O2

(i) (ii)

Figure 2. (i) Attacks between arguments in scenario shown in Figure 1;
(ii) Simplified argumentation framework obtained after eliminating

unsuccessful attacks

extending the notion of abstract argumentation framework (see Sec-
tion 2.4), we can define a 3-2-Keepaway scenario-specific argumen-
tation framework as follows:

Definition 1. A 3-2-Keepaway scenario-specific argumentation
framework (SAF) is a tuple (Sta,Arg∗, AF ) such that:

1. Sta is the specific state of the game, which is represented by the
values of the 13 state variables in Table 1;

2. Arg∗ =
⋃3

i=1 Arg∗i , where Arg∗1 = {H}, Arg∗2 = {F2, O2}
and Arg∗3 = {F3, O3};

3. AF = (Arg,Att) is an abstract argumentation framework where:

• Arg =
⋃3

i=1 Argi, where Argi ⊆ Arg∗i such that Arg1 =
Arg∗1 , and for i ∈ {2, 3}, (i) Fi ∈ Argi iff Ki is far; and (ii)
Oi ∈ Argi iff Ki is open;

• Att ⊆ Arg × Arg such that (A,B) ∈ Att iff A ∈ Argi and
B ∈ Argj with i �= j.

Note that for any two arguments A and B in a SAF, if (A,B) ∈ Att
then (B,A) ∈ Att. Specifically, all the arguments in a SAF fall into
three categories: Arg1, which just contains H, and Argi (i = 2, 3),
which contains all available arguments in the scenario characterised
by Sta that support PassBall(i)ThenReceive. Based on the given di-
vision of arguments, it is easy to see that arguments in the same
category (Argi) are conflict-free; arguments in different categories
symmetrically attack each other. Also, each preferred extension cor-
responds to an action, because it corresponds to exactly one Argi.

Theorem 1. Given SAF = (Sta, Arg∗, AF = (Arg,Att)), S is a
preferred extension for AF iff S = Argi for some i ∈ {1, 2, 3}.

Proof. First we prove that if S = Argi, i ∈ {1, 2, 3}, then S is a
preferred extension. Assume S = Argi for some i ∈ {1, 2, 3}. Then
S is conflict-free, and as Argi attacks all arguments not in Argi, S
is admissible and cannot be extended without losing the property of
being conflict-free. So S is preferred.

For the other direction, assume S is a preferred extension. We must
show there is i s.t. S = Argi. Assume not. Then either S ⊂ Argi for
some i, or ∃A,B ∈ S such that A ∈ Argi and B ∈ Argj for i �= j.
The latter is clearly impossible or else S would not be conflict-free.
So S ⊂ Argi for some i. But each Argi is admissible because it is
conflict-free and all attacks in the framework are symmetric. So S is
not maximal-⊆ admissible, and so not preferred. Contradiction.

We extend the SAF to 3-2-Keepaway audience-scenario-specific
value-based argumentation framework (VSAF) by introducing the
concept of audience-specific values [1], where intuitively the audi-
ence is a domain expert. To be specific, we introduce the value set V
which consists of three values:

• Lower the risk of marking (MK): reducing the risk of K2 and
K3 being marked is valued;

• Lower the risk of interception (IT): reducing the risk of the ball
being intercepted is valued;

• Lower the risk of tackle (TK): reducing the risk of the ball being
taken from K1 is valued.

Because K1 can attract takers to approach by holding the ball, the
value MK is promoted by the argument H. With regard to passing, the
risk of interception can be reduced if the ball is passed to a keeper
which is open. So IT is promoted by O2 and O3. In addition, by
passing the ball to the other keepers who are far from the takers,
the risk of being tackled will be lower, and the value TK can be,
therefore, promoted by F2 and F3.

Definition 2. A 3-2-Keepaway audience-scenario-specific
value-based argumentation framework (VSAF) is a tuple
(SAF, V, val,ValprefSta) where:

1. SAF = (Sta, Arg∗, AF = (Arg,Att)) is a 3-2-Keepaway
scenario-specific argumentation framework;

2. V = {IT, TK,MK} is the set of values;
3. val = {O2 �→ IT, O3 �→ IT, F2 �→ TK, F3 �→ TK, H �→ MK}

is a function which maps from Arg∗ to V ;
4. ValprefSta ⊆ V × V is a preference relation (transitive, irreflexive

and asymmetric), reflecting the value preferences in state Sta.

Based on the preference of values in scenarios, unsuccessful at-
tacks can be eliminated [1] and simplified abstract argumentation
frameworks derived from a VSAF, adapting the method reviewed in
Section 2. Take the scenario in Figure 1. Suppose that in this sit-
uation ValprefSta is given be IT >v TK >v MK; then the attack
relationships (F3, O2), (H,O2), (H,F3) and (H,F2) are elim-
inated. The simplified argumentation framework is shown in Fig-
ure 2 (ii). The unique preferred extension of this simplified frame-
work is {O2, F2}, in which there is an argument promoting the high-
est value, namely IT, and where both arguments support the action
PassBall(2)ThenReceive. Recall that, according to the analysis in
Section 3.1, PassBall(2)ThenReceive is the most encouraged action
according to the domain knowledge. In fact, we can prove that, in a
simplified argumentation framework, the highest value will be pro-
moted by an argument in every preferred extension and each pre-
ferred extension corresponds to one action.

Theorem 2. Let AF− = (Arg,Att−) be a simplified argumenta-
tion framework derived from VSAF = (SAF, V, val,ValprefSta). Let
VSta = {v | v ∈ V, ∃A ∈ Arg s.t. A �→ v}. Define vmax ∈ VSta such
that ∀v ∈ VSta, (v, vmax) /∈ ValprefSta. For any preferred extension
S of AF−, ∃A ∈ S s.t. A �→ vmax.
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Proof. We prove this theorem by contradiction. Suppose S is a pre-
ferred extension and �A ∈ S such that A �→ vmax. Assume B /∈ S
and B �→ vmax. Then for any C ∈ S, (B,C) ∈ Att− and
(C,B) /∈ Att−. As a result, S is not admissible, which contradicts
the assumption that S is a preferred extension.

Theorem 3. Let AF− = (Arg,Att−) be a simplified argumentation
framework derived from (SAF, V, val,ValprefSta). If S is a preferred
extension of AF−, then for some k ∈ {1, 2, 3}, S = Argk.

Proof. Suppose S is a preferred extension. We can prove this theo-
rem by proving S ⊆ Argk and Argk ⊆ S for some k ∈ {1, 2, 3}.
Note that by eliminating unsuccessful attacks, some of the symmet-
rical attacks are replaced by one-side attacks. So in Arg, for any two
arguments in different categories, there still exists some attack rela-
tionships between them, either symmetrical or one-sided. Since S is
conflict-free, S is a subset of a specific Argk for some k ∈ {1, 2, 3}.
To show Argk ⊆ S, we first show that S is non-empty. Theorem 2
shows that each preferred extension contains an argument that pro-
motes the highest value. Therefore all the preferred extensions of
AF− are non-empty. Now we prove Argk ⊆ S by contradiction.
Suppose ∃B ∈ Argk and B /∈ S. Because S ∪ {B} ⊆ Argk,
S ∪ {B} is conflict-free. Assume that ∃C ∈ Argj , j �= k such that
(C,B) ∈ Att−. Since S is a non-empty preferred extension and
S ⊆ Argk, S attacks C. So S ∪ {B} is admissible. But this contra-
dicts with the assumption that S is a preferred extension. Therefore,
the assumption is incorrect and Argk ⊆ S.

As a consequence of these results, the rational actions determined
argumentatively are the actions promoting the highest (viable) val-
ues. This justifies the choice of numerical values discussed next.

3.3 Rankings and potential values of actions

Recall that our aim in constructing the argumentation frameworks
is to get Φ(s, a) (Section 2.3). Learning performance can be very
sensitive to the Φ(s, a) values, so they should reflect our domain
knowledge accurately. Since the domain knowledge is essentially
based on the idea of promoting higher values in specific scenarios,
assigning numbers to the values is the most direct method to trans-
form abstract domain knowledge into numerical values. Specifically,
by assigning values with numbers, VSAF can be extended to 3-2-
Keepaway audience-scenario-specific numerical-value-based argu-
mentation framework, which is formally defined as follows:

Definition 3. A 3-2-Keepaway audience-scenario-specific
numerical-value-based argumentation framework (NVSAF) is
a tuple NVSAF = (VSAF, G) such that:

• VSAF = (SAF, V, val,ValprefSta) is a 3-2-Keepaway audience-
scenario-specific value-based argumentation framework

• G is a function on VSAF such that G : Sta× V → R.

For example, given the scenario Sta showed in Figure 1,
G(Sta,MK) = RMK, G(Sta, IT) = RIT and G(Sta, TK) = RTK

where RMK, RIT, RTK∈R. Because HoldBall() is supported by argu-
ment H, which promotes value MK, we have Φ(Sta,HoldBall()) =
RMK. Similarly, Φ(Sta,PassBall(2)ThenReceive) = RIT +RTK and
Φ(Sta,PassBall(3)ThenReceive) = RTK. It should be emphasised
that G(Sta, V ) values should be chosen so as to be consistent with the
ordering of values in ValprefSta. For example, in the scenario showed
in Figure 1, we have supposed that IT >v TK >v MK. As a result,
we should have RIT > RTK > RMK. In specific states, actions will

be supported by a number of arguments which promote different val-
ues. So we can simply compute the Φ(Sta, a) values by summing
up the numerical values of abstract values that corresponds to this
action a. Formally, in state Sta, the potential value of action a is:
Φ(Sta, a) =

∑
arg∈Argi

G(Sta, val(arg)) where i = 1 if a is
HoldBall(), and i = 2, 3 if a is PassBall(i)ThenReceive.

4 IMPLEMENTATION RESULTS

In this section we deploy the techniques of Section 3 within the
RoboCup Soccer simulation platform (see www.robocup.org).
We first give the parameters we use for the experimentation (Sec-
tion 4.1) and then discuss the empirical results (Section 4.2).

4.1 Threshold and parameter values

The parameters of numerical values used in this paper are proposed
on the basis of observation, runtime data statistics and earlier results.
As all these numbers are the result of a limited number of exper-
iments, we make no claims that they are optimal, and most likely
there is considerable room for improvement.

For the threshold values for determining far and open, we set
L = 10 and A = 15. We presume a risk-avoidance attitude, always
ranking IT higher than TK. Thus, ValprefSta can be defined as:

ValprefSta =

⎧⎨
⎩

MK > IT > TK iff K1 is safe
IT > MK > TK iff K1 is under threat
IT > TK > MK iff K1 is in danger

Here we define that when Minj∈1,2dist(K1, Tj) > 10, K1 is safe;
when 5 < Minj∈1,2dist(K1, Tj) � 10, K1 is under threat; when
0 < Minj∈1,2dist(K1, Tj) � 5, K1 is in danger. Furthermore, we
define the function F in NVSAF as: 2

G(Sta, {MK, IT, TK}) =
⎧⎨
⎩
{40, 20, 10} iff K1 is safe
{10, 20, 5} iff K1 is under threat
{0, 25, 5} iff K1 is in danger

Here, the numbers are set according to the following principles:

• HoldBall() should be encouraged when K1 is safe. According to
the analysis in Section 3.1, the reward of HoldBall() in the original
system is too low. As a result, the abstract value MK, promoted by
HoldBall(), should be assigned higher numerical values.

• IT should be assigned higher numerical values. As described in
Section 3.1, the value IT is out of consideration in the existing re-
warding system. In other words, the rewards of IT will only come
from the potential values. So IT should have higher values.

• The magnitude of these numerical values should be comparable
with the Q(s, a) values in the original SMDP algorithm. If the
numerical values here are much larger than the original Q values,
the effect of the original rewarding rules will be ‘submerged’ and,
as a result, the convergence process will take a longer time; oth-
erwise, the shaping reward will quickly be ‘submerged’ and the
learning performance will not be significantly improved.

4.2 Empirical results

The parameters in the SMDP have the same values as described in
[12], while the values of other parameters have been described in the
previous sections. Here we employ the look-ahead advice [15] as the
reward shaping technique, and the Φ(s, a) values are computed ac-
cording to the method described in Section 3.3. The learning curve of
the standard SMDP algorithm and the argumentation-based SMDP
algorithm have been shown in Figure 3. After the first few hours

2 Here G(Sta, V ) is a compact representation of G(Sta, v), ∀v ∈ V
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Figure 3. Performances of the standard SMDP algorithm and the
argumentation-based algorithm. Each curve represents the average

performance over 10 independent trials.

of adjustment, the argumentation-based approach increases faster
than the standard algorithm, and becomes constantly better than the
standard algorithm after about 7 hours of learning. Note that each
learning trial will stop after almost 35 hours of training because the
RoboCup Soccer simulation platform becomes unstable then.

5 RELATED WORK

There has been some research on improving the performance of RL
by using high-level domain knowledge. Marthi [6] proposed abstract
MDP to find an approximation of the true shaping functions by solv-
ing a simpler abstract problem under the instructions of prior knowl-
edge. Grzes and Kudenko [5] used the high-level STRIPS operator
knowledge in reward shaping to search for an optimal policy and
showed that the STRIPS-based reward shaping converges faster than
the abstract MDP approach. However, in both of these approaches,
a goal state is required, which is unavailable in the Keepaway game.
Bianchi et al. [10] proposed the Heuristically Accelerated RL method
to integrate heuristic information into RL. However, in their ap-
proach, for a proportion 1 − ε (see Section 2.2), the action which
is chosen by the heuristics will be executed, and for the other ε pro-
portions, a random action will be chosen. As ε is often very small, in
most occasions, the heuristically chosen actions will be executed and,
as a result, in order to improve the performance of RL, fine-grained
and accurate heuristics are needed. But in complex applications such
as Keepaway, precise heuristics can hardly be obtained.

There is research on improving machine learning by argumenta-
tion. Mozina et al. [7] proposed argumentation based machine learn-
ing, which combines arguments with the original examples of CN2
algorithm [2] to form argumented examples. The use of arguments
significantly improves the performance of CN2. However, the rela-
tionships between different arguments are not taken into account in
their technique, which restricts the effect argumentation has. Also,
the machine learning technique considered, CN2, is supervised.

6 CONCLUSION

We described a novel approach to reinforcement learning (RL) that
draws on concepts from argumentation theory. We use argumenta-
tion frameworks to represent the domain knowledge systematically
and explicitly, so that by identifying the preferred extensions of the
argumentation frameworks, domain experts and algorithm designers
can verify their ideas and integrate heuristic instructions into RL.

We implemented ABRL in the SMDP algorithm and conducted
experiments on Keepaway games. We showed that the best actions
and highest values can be identified by obtaining preferred exten-
sions of the argumentation frameworks. Based on these instructions,
domain knowledge can be turned into numerical values and incor-
porated into the original SMDP algorithm. Experiment results show
that by using the argumentation-based approach, the optimal perfor-
mance can be significantly improved.

There are four main issues about ABRL that still need to be fur-
ther researched. First of all, how to extend the argumentation frame-
works to integrate more accurate and detailed heuristic instructions
into the RL algorithms. In this paper, we use only five arguments.
This greatly restricts the effect the arguments may have on the learn-
ing process. Secondly, in our current work, we obtain the preferred
extensions in VSAFs by hand. In large scale systems where many
arguments may be employed, this will be extremely time-consuming
or even impossible. So in the long term, computing the preferred ex-
tensions automatically will be essential. Thirdly, we need a method
to assign numbers to values automatically. At present, the numeri-
cal values are proposed by domain experts. Inevitably, some errors
may be contained in these hand-tuned numbers. Since the strength
of each argument can be identified by analysing the structure of the
argumentation frameworks, we may be able to assign numbers au-
tomatically so that the domain knowledge can be reflected by those
numbers more accurately. The last issue is how to extend ABRL to
multi-agent learning scenarios. Currently, our work focuses on the
learning process of an individual agent. However, as a powerful tool
to handle negotiation problems between agents, argumentation may
have a greater effect in the multi-agent learning scenario.
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