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ABSTRACT

Access control operates under the assumption that it is pos-
sible to correctly encode and predict all subjects’ needs and
rights. However, in human-centric pervasive domains, such
as health care, it is hard if not impossible to encode all emer-
gencies and exceptions, but also to imagine a priori all the
permissible requests. Break-glass is an approach that em-
bodies the idea that under certain conditions it is possible
for a subject to break-the-glass and explicitly override the
denied request. Current break-glass models make this deci-
sion without considering and investigating what the reasons
for issuing the denial are, and they have a fixed decision
procedure to determine whether the override is permitted.
Furthermore, they do not explicitly represent and reason
over conflicting and missing information about subjects and
the context; which in human-centric pervasive domains is a
norm rather than an anomaly. This paper presents a novel
break-glass model, Rumpole, that structures a break-glass
policy by establishing why the access was denied. It uses
Belnap’s four-valued logic to represent conflicting and miss-
ing (unknown) information, allowing the policy to make a
more informed decision when faced with missing or inconsis-
tent knowledge. The model also provides a declarative query
language that is used to specify an explicit break-glass deci-
sion procedure, rather than having an implicitly hard-coded
one. This allows a policy writer to further condition and
restrict when and how break-glass access is permitted.
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1. INTRODUCTION
Computer systems often employ a security policy that

governs which subjects, under which conditions, are permit-
ted to use resources. The policy is often enforced through
the access control model that uses a preventive protection
strategy. A crucial assumption underlying the access control
system is that the encoded security policy is complete and
can anticipate and precisely formulate which subjects ought
to be permitted to access a resource.

However, in domains where it is not possible to completely
encode or anticipate who should be granted access under
which conditions, this assumption can result in obstructing
people in their tasks, thus creating more risk than it tried
to prevent. Risannen et al. [20] refer to these situations as
“not machine encodable”. For example, precise encoding of
an emergency may never be complete, yet it is necessary to
allow some access in precisely those situations. Conversely,
it may be well understood what an emergency is but not
who ought to be permitted. The common access control ap-
proach to these situations is not to grant the access, thus
preserving the confidentially and integrity of resources, but
at the cost of restricting availability. Even adopting an open
access control policy, where a subject is permitted unless
explicitly denied, does not alleviate the problem. For exam-
ple, a subject could be denied because there is no emergency
(but this is incompletely encoded), or simply because it was
not anticipated that the subject needs the access.

Break-glass access control has recently been proposed [19,
2] as a way to supplement traditional access control models
in order to deal with these situations. The core idea of
the approach is to allow the subject to override the access
control decision, whilst imposing obligatory actions on the
subject or the system itself. The main difference between
standalone and break-glass policies is that the former encode
the conditions for permitting access, while the latter encode
the conditions under which overrides are permitted. The
benefits of allowing overriding are established in pervasive
computing domains such as emergency management [2] and
health-care [11]—but even more traditional domains such as
business applications are adopting break-glass concepts such
as the Virsa Firefighter for SAP software [1].

An essential aspect of override permissions is comprehend-
ing why the denial was first issued. Clearly there is a differ-
ence between subjects’ being explicitly denied and not being
explicitly permitted. Equally, a subject may be typically per-
mitted (e.g. has the right role or credentials) but a particular
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access will violate integrity constraints such as separation-
of-duty. Current break-glass models do not attempt to rep-
resent precisely why the request was denied. This leaves the
break-glass policy to be defined only in terms of contextual
conditions without being able to constrain the break-glass
overrides based on knowledge of the denial’s causes.

Modality conflicts (where a subject is permitted and de-
nied at the same time) commonly occur when making an
access control decision and the access control model must
employ a conflict-resolution strategy. But a conflict value
can be useful to communicate to the break-glass policy, as it
clearly shows that there is evidence to support both a per-
mission and a denial. In a distributed system there could be
many access decision points and their decisions could dis-
agree (without any of them having internal conflict). How-
ever, when combining these decisions it is clear that the
conflict value is needed to accurately determine the overall
decision. There are also situations where the access con-
trol simply has too little information and it is unknown
whether the subject is permitted or denied. In these sit-
uations some form of Closed World Assumption (CWA) is
adopted, where the unknown value is assumed to be false,
but unknown would be more useful. The need to evaluate a
decision as unknown appears quite naturally in distributed
scenarios where decision points can be unreachable. In per-
vasive systems these problems are even more acute as the
decisions are based on sensor data (to establish the context)
which can be conflicting or missing. Current break-glass
approaches do not offer a framework to represent these dif-
ferent truth and knowledge levels and no way to define how
such values are to be combined in order to reach a decision.

It is of vital importance to be able to constrain the over-
rides by imposing non-contextual conditions such as limit of
overrides per subject or target, how much incomplete knowl-
edge is allowed, the least number of available access decision
points, etc. These fine-grained integrity constraints are not
currently considered by break-glass models. Furthermore,
current models have an implicit decision procedures which
dictates how the break-glass decision is reached. A fixed
decision procedure tells the PDP which break-glass policies,
in which order, they are to be considered, thus the policy
writer is forced to construct the break-glass policy according
to this fixed decision procedure.

This paper presents a novel break-glass model, Rumpole,
to be used as an extension of access control models. Rumpole’s
contributions are three. (1) It introduces notions of sub-
jects’ competences and empowerments to gain more insight
into the causes for the access denial, (2) It uses Belnap’s
four-valued logic [6] to represent conflicting and incomplete
information, and this logic underlies the semantics of rules
used to encode how these facts are combined to evaluate
how much is known about the subject and whether he may
override. (3) The model has a declarative query language to
specify a break-glass decision procedure, this allows a pol-
icy writer to condition and constrain the break-glass access
permissions in a fine-grained manner by embedding integrity
constraints into the decision procedure.

2. OVERVIEW OF RUMPOLE MODEL
This section provides an informal account of Rumpole

model where a high-level break-glass policy is encoded using
the following concepts:

• Competences – Encode whether a subject has necessary
abilities to access the resource without causing harm to
the resource or the system.

• Empowerments – Encode whether the necessary contex-
tual conditions are met so that the access will not cause
harm to the resource or the system.

• Break-glass Rules – Encode whether a subject is permitted
or denied to override an access control denial based on
what is known about his competences, empowerments and
obligations that he has accepted or violated.

• Resolution Query – Encodes how the rules, and under
what conditions, are consulted in order to reach an over-
ride decision.

2.1 Integration with Access Control Points
As indicated in the Introduction, Rumpole is not an exten-

sion of a particular access control model, such as presented
in [12] for RBAC. This creates a clear separation of concerns
between the two models and more importantly it allows the
break-glass decision point to be able to consult different, and
possibly distributed, access control knowledge bases. Figure
1 captures how this separation between the access control
decision points (ACPs) and the break-glass decision point is
organised. PDP represents a security policy decision point

Figure 1: Integration of the break-glass decision
point within a PDP

which consists of two types of decision points: access control
points and a break-glass point. When the subject requests
a particular access, the PDP will consult its access control
point(s) to determine whether the access can be given. How
their decisions are combined to reach a decision is indepen-
dent of the break-glass policy. If the request is denied, the
PDP will forward the request to the break-glass point to see
if this decision can be overridden by the break-glass policy
encoded through Rumpole. If the override can be given, the
subject will be notified about the possible obligations that
he will have to fulfil and asked to confirm that he accepts
them. This confirmation interaction is not part of the model
and is left to be enforced by the PDP implementation.

The Query abstraction represents the interaction between
the break-glass point and an individual ACP, when a break-
glass point attempts to determine why the denial was issued
(we assume that the access control point can answer queries
about the state of its knowledge base). Naturally, the ques-
tion arises of what the query should contain, or how the
denial should be represented. In this paper we propose that
the denial is depicted by the concepts of competences and
empowerments.

However, the break-glass point need not be reliant only
on a set of access control points. We use the term Security
Agent to refer to either human or computational agents who
can testify for or against subjects’ attributes. The reason
why we explicitly separate an ACP and a security agent is
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that not all security agents are qualified to make an access
control decision. This is especially prevalent in pervasive
systems such as health care, where nurses can often supply
security relevant information on the subjects or even make
certain local security decisions.

2.2 Competence and Empowerment
Fundamentally, an access control model attempts to de-

termine whether the subject requesting the access is per-
mitted, given the context of the request. As put forward in
Barker [4], all subjects are organised into categories (which
could be roles, domains and so forth), and permissions hold
between a subject’s category and a requested action on a re-
source. Determining the who part of the permission means
determining if the subject’s category is sufficient for allowing
the access, and the category inclusion can be contextually
constrained.

On the other hand, the contextual conditions describe in-
tegrity constraints which are not part of the conditions that
determine which category the subject falls into or which per-
missions a category has. Typical examples of these condi-
tions represent separation-of-duty constraints, where a sub-
ject can typically access a resource but owing to his current
open sessions or previous accesses cannot be permitted. Sim-
ilarly, a particular access may not be allowed after working
hours. Even though this condition could be encoded through
the definition of a subject’s categories, it is more naturally
expressed as an integrity constraint.

It follows that the fundamental understanding of why the
denial was issued lies in determining whether a subject’s cat-
egory (if it was assigned to any) has the necessary permis-
sions and also whether such permissions broke any of the
contextual constraints. We characterise these two aspects
as: (1) competence and (2) empowerment .

The notion of competence subsumes the notion of belong-
ing to a permitted category and attempts to capture whether
the subject possesses abilities necessary for accessing the re-
source in a way that would not cause any undesired harm.
For example, belonging to a nurse category implicitly car-
ries the notion that the subject has the skills to perform
certain nursing tasks on patients and should be given access
to appropriate patient data. Competence could also be es-
tablished by a set of certificates and credentials. However,
the notion of competence does not have to be exclusively
linked to a particular role, domain or credentials. Those
attributes are used as evidence for a subject’s competence.
This can augmented by additional evidence that is not di-
rectly linked to a particular access control model. So, for
example, a break-glass policy might say that after a certain
number of reviewed and approved overrides a subject can be
considered as competent.

The notion of empowerment subsumes these of resource-
specific and contextually-specific integrity constraints, and
captures whether the access should take place without con-
sidering whether some particular subject is competent to
make it. For example, a subject, in a typical separation-of-
duty constraint, may not be permitted to execute two work-
flow conflicting tasks, and this information could be used
as evidence to support or diminish his empowerment. But
much as is the case with competence, empowerment does
not have to depend exclusively on integrity constraints.

From the given discussions, it follows that a minimal un-
derstanding of why a denial was issued can be obtained by

using the access control knowledge base to provide evidence
to support or disprove subjects’ competences and empower-
ments. Thus having the necessary credentials can be used
as positive evidence towards establishing competence, but
breaking the integrity constraints is negative evidence for
an empowerment. This kind of intimate understanding of
the access control decision gives us a fine-grained way to
structure break-glass policies.

Notice that apart from being true and false, both com-
petences and empowerments can also be unknown. In other
words, if the subject does not posses the necessary creden-
tials it may be more appropriate to say that it is unknown
whether it is competent rather than adopting the Closed
World Assumption (CWA) and automatically assuming that
it is not. On the other hand, not belonging to a particular
category may be deemed as sufficient to establish that the
subject is not competent. Clearly we need the additional
unknown value to specify how the access control knowledge
base is to be interpreted and used. Furthermore, if a par-
ticular distributed access control point, or a security agent,
cannot be reached, then their knowledge should be evidently
characterised as unknown.

Similarly, a subject may be deemed competent by one
access control point and not competent by another. The
appropriate value for the competence is therefore conflict.
However, even locally some evidence may support a sub-
ject’s competence (such as having the credentials) but other
evidence such as broken obligations may go against it, result-
ing in the conflict value. A better understanding of whether
a subject is competent and empowered can be achieved by
expanding the truth-value space, rather than attempting to
represent these attributes using the classical truth values of
“true” and “false”. Since there is a clear distinction between
the four truth values of “true”, “false”, “conflict” and “un-
known”, they can be used to specify a more precise break-
glass policy.

2.3 Break-glass Rules
Given what and how much is known about a subject’s

competences and empowerments, we need to specify how
their truth values are to be combined in order to establish
whether an override is permitted or not. The override de-
cision can be further conditioned by the obligations that a
subject has to agree upon or conditioned by contextual situ-
ations surrounding the request. These break-glass rules are
split into two types: (1) permit rules and (2) deny rules.

Permit rules specify how much is known about whether
an override is permitted. The meaning of the true value is
that it is known that the subject is permitted. The false
value indicates that it is known that the subject is not per-
mitted. The unknown value tells the PDP that it cannot
be established whether the override is permitted. Finally
the conflict value indicates that there is evidence to support
both cases. Hence, expanding the truth-value space is not
only beneficial for reasoning about subjects’ competences
and empowerments but also for allowing a clear statement
of what and how much is known about their override per-
missions as well.

Often it is needed to state more explicitly that a subject
is denied an override, much like the integrity constraints are
used in access control policies. We refer to these rules as
deny rules. Strictly speaking it is not necessary to have
deny rules: one may attempt to embed these constraints
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into permit rules and make sure that they are evaluated as
false. This will, however, create complex rules that are hard
to specify and manage. Not only can deny rules be used to
create a less complex policy, they can also be used to give
different semantic weight to denial constraints when consid-
ering them in conjunction with the permit rules. For exam-
ple, in certain cases the deny may take precedence over the
permit decision and similarly not permitted may be taken as
stronger than not denied. This is addressed in more detail
in Section 7.

2.4 Break-glass Resolution Query
A break-glass resolution query specifies how the break-

glass decision point infers a binary override decision which
either permits an override or not.

The resolution query specifies how to combine knowledge
about whether the subject is permitted or denied. But it also
allows us to define how much weight is given to each decision
and how much knowledge is deemed sufficient in order to
make a conclusive decision. For example, for some resources
only full knowledge that the request is not explicitly denied
may be required, but for more sensitive resources the request
would have to be permitted as well. The resolution query
thus gives a fine-grained way to specify whether to override
access control based on understanding how much is known,
how much is unknown, or in conflict.

Informally: the break-glass rules establish how much is
known about whether the request is permitted or denied,
and the resolution query then specifies how such information
is used to instruct the PDP what to do.

3. BELNAP’S FOUR LOGIC
In [6] Belnap introduced a logic based on four different

truth values: the classical values t (true) and f (false), and
two additional ones, ⊥, intuitively denoting lack of infor-
mation (no knowledge), and ⊤, denoting inconsistency or
conflict of information (over -knowledge). It is commonly
referred to as the logic FOUR. The main notion behind

Figure 2: The Logic FOUR [6]

these truth values is to convey how much is known regard-
ing the truth of a sentence, when the evidence is gathered
from possibly multiple sources.

The truth values have two natural orderings (Figure 2).
The first is the standard logical partial order ≤t, which re-
flects differences in the measure of truth that every value
represents. f is the least element, t is the greatest one, while
⊤ and ⊥ are the intermediate values that are incomparable
w.r.t. ≤t . As Figure 2 indicates, these four values form a
lattice with respect to the ≤t ordering. The finite meet and

join of this lattice, ∧ and ∨ respectively, correspond to the
classical truth operators. Negation is represented through
an order reversing involution unary operator ¬, for which
⊤ = ¬⊤, ⊥ = ¬⊥. For the values t and f, the truth opera-
tors ∧ and ∨ behave as in classical logic.

The second order, ≤k, reflects the differences in the amount
of knowledge or information that each truth value exhibits.
Again the four values form a lattice such that ⊤ is the maxi-
mal element, ⊥ is the minimal, and t and f are incomparable
w.r.t. ≤k. Fitting [13, 14] introduced symbols ⊗ and ⊕ to
denote respectively the finite meet and join operations. The
⊗ can be seen as giving the most amount of information that
the truth values can agree on, while the ⊗ can be seen as
giving the most amount of information that can be derived.
So for example f ⊕ t ≡ ⊤, which fits into our intuitive no-
tion that having supporting evidence for both the truth and
falsity will give rise to a conflict. Similarly ⊤ ⊕ A ≡ ⊤ for
all A, essentially says that once a conflict is established for
a certain value adding any more information cannot change
this. On the other hand f ⊗ t ≡ ⊥, which says that there is
no information that is agreed upon. All binary operators are
monotonic w.r.t both orderings (if x1 ≤∗ y1 and x2 ≤∗ y2
then x1 op x2 ≤∗ y1 op y2) but the negation operator is only
monotonic w.r.t ≤k ordering.

The previously introduced idea that the break-glass pol-
icy (encoded in Rumpole) needs to differentiate whether a
certain subject’s property or a system state is known to be
true or false, or unknown, or conflicting can be mapped to
the Belnap truth values. So these truth values cover the
sought-after truth space, while the Belnap operators pro-
vide the necessary connectives to describe how to combine
various pieces of evidence.

4. LANGUAGE LE

The language LE is used by Rumpole to encode rules that
define how competences, empowerments and override per-
missions are determined. Every rule can be seen as a piece
of evidence contributing towards this evaluation. The lan-
guage LE is a multi-sorted function-free language used for
specifying correlations between Belnap predicates. It is de-
fined over the FOUR truth values and we assume the usual
logic programming notions of a term, literal, and a predi-
cate. An atomic formula, or simply an atom, is an expres-
sion p(t1, ..., tn) where p is a predicate of arity n and ti is a
term.

An interpretation I of a set of rules P is a function that
to every ground atom from the Herbrand base of P assigns
a Belnap truth value. Formulae of LE are expressions build
up from atoms using the introduced Belnap operators: ¬,
∧, ∨, ⊕, ⊗, and constants {⊤4,⊥4, t4, f4}.

Definition 1. The interpretation I is extended pointwise
to Belnap formulae in the following manner:

• I(⊤4) = ⊤ and similarly for other constants as well.

• I(¬ψ) = ¬I(ψ) where ψ is an LE formula.

• I(ψ ∧ ψ′) = I(ψ) ∧ I(ψ′) where ψ and ψ′ are LE for-
mulae, and similarly for operators: ∨, ⊗, and ⊕.

LE rules are split into two types, the unconditional and the
conditional ones. In order to make the presentation of the
semantics clearer, we shall first consider the unconditional
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rules and the semantics of the specification that only con-
tains these rules; after that we shall expand the semantics
to include the second type of rules as well.

Definition 2. An unconditional rule is an expression A⇐
ψ, where A is an atom and ψ is a formula.

An unconditional rule with a grounded atom as its head and
a constant as its body is referred to as a fact.

The unconditional rule should intuitively be thought of as
a rule of testimony that says that there is evidence for the
atom A to have at minimum the truth value of ψ: in other
words I(A) ≥k I(ψ) for every rule. Just as in the case for
choosing an interpretation for the semantics of the normal
logic programs, where the interpretation may be required
to be minimal w.r.t. the number of true atoms, we would
also like the interpretation I to be minimal in the amount of
knowledge that it assigns. But it should also be supported in
the sense that it assigns only as much knowledge as needed to
satisfy all the rules. In order to construct this minimal and
supported interpretation I , we will use a fixpoint operator
TP which maps an interpretation I onto interpretation I ′ in
such a way that it applies the evidence rules over I to derive
values for I ′. We keep applying this operator in order to
reach a fixpoint interpretation which we will show to be the
minimal and supported interpretation that we are looking
for.

The set of unconditional rules is first grounded and then
with this grounded set of rules P a fixpoint operator TP is
associated, defined as:

TP (I)(A) =

{

I(ψ1 ⊕ ...⊕ ψn) ∀A where A⇐ ψi ∈ P
⊥ ¬∃A where A⇐ ψi ∈ P

TP maps an interpretation I onto interpretation I ′, such
that for all A it holds that I ′(A) = TP (I)(A). This defined
operator is a modification of the operator that Fitting in-
troduced in [13] where the ground atom A could appear in
the head of exactly one ground rule. As these rules are used
to formulate pieces of evidence for a particular attribute or
property, they should be combined using ⊕ operator. The
reason for this is that the intuitive meaning of the knowledge
base’s interpretation is that which assigns the least amount
of knowledge such that all the rules are taken into account.

This way of combining the rules is in contrast to normal
logic programs where the operator ∨ is used, and to further
illustrate why we have chosen ⊕ instead of ∨ let us consider
the set of rules P , {a ⇐ ⊤4, a ⇐ ⊥4}. If the ∨ operator
is used, IP (a) = t, where the ⊕ will result in IP (a) = ⊤.
It seems counterintuitive that if we have evidence for a to
suggest that it is both in conflict and unknown then the
interpretation should convey that a is true.

Since all the Belnap operators are monotonic with respect
to ≤k (and by structural induction all formulae ψ made out
of these operators), it follows that the TP is a monotonic
operator, thus for any two interpretations it holds that:

I1 ≤k I2 ⇒ TP (I1) ≤k TP (I2)

Clearly this monotonicity does not extend the truth-ordering
≤t as negation is a non-monotonic operator with respect
to truth-ordering. Furthermore Fitting has also established
that the operator TP is (chain) continuous, and for any chain
of interpretations I1 ≤k I2 ≤ ... it holds that:

TP (
⊕

i

Ii) =
⊕

i

TP (Ii)

By the Knaster-Tarski theorem the monotonic and contin-
uous operator TP [13, 14] has the least fixpoint TP↑

ω which
can be constructed through:

I0P
def
= I⊥

In+1
P

def
= TP (I

n
P )

. . .

TP↑
ω def

=
⊕

α<ω

IαP

where I⊥ represents an interpretation which assigns ⊥ to
every atom from P ’s Herbrand base. We follow Fitting and
take this least fixpoint, TP ↑

ω as a canonical interpretation
for P ’s declarative semantics.

Given TP ’s definition and its properties, TP can be seen
as accumulating knowledge by progressively using the given
rules as evidence to establish the least amount of knowledge
such that the head of every rule has as little knowledge as
possible and still be ≥k than its I(ψ). And the least fixpoint
is minimal and supported as it requires no more information
in order for its rules’ heads to be ≥k than their bodies. Thus
if the value of any A is lowered in the least fixpoint, some
rule will have A �k I(ψ), meaning that this piece of evidence
has effectively not been taken into account. If a set of LE

rules are taken as evidential rules for encoding competences,
empowerments and break-glass rules, then the least fixpoint
combines all the evidence for a particular attribute in such
a way to maximise, as much as it has to, the amount of
knowledge that can be established about these attributes.

Notice that the fixpoint is non-monotonic with respect to
the truth ordering: adding more facts or rules to P may turn
the truth value of some of its atoms from t to f or vice-versa.

As mentioned at the beginning of this subsection the TP

operator can be used over the set P of unconditional rules,
and the reason why we refer to these rules as unconditional
is that the TP operator considers them unconditionally as
pieces of evidence, since in every iteration every rule is used.
But this presupposes that each piece of evidence should be
used to establish the Belnap value of a rule’s head. At first
this may seem right, after all this is exactly how the normal
logic program’s clauses are used. But let us consider the
following example: A nurse is competent to do any action
on any target at any time. The policy writer may write the
following rule:

competent(Sub,Act, Tar,T ) ⇐ role(Sub, nurse)

This rule is deceptively simple and it can give rise to some
potentially unwanted consequences. For example when f is
assigned to role(Sub, nurse), the Sub will be considered as
not competent and similarly when I(role(Sub, nurse)) = ⊤,
the fixpoint will tell us that the Sub has both evidence for
and against her competence. Clearly this encoding is wrong
since the intuitive notion of the example is to say that if the
Sub is nurse, it is competent but it does not address what
to conclude when the Sub is not a nurse.

The solution to this is to use the role condition as the
rule’s applicability condition; if it is true then other condi-
tions are evaluated, otherwise the rule is skipped. In normal
logic programs when clauses are used as low-level policies,
there is no need to separate the conditions as they are con-
joined with the ∧ operator and they can entail the true value
only when all conditions are true. This is no longer the case
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with the rules in Belnap logic: more values can be entailed
and it must be clearly stated when these values should be en-
tailed. To express these conditions we propose the following
applicability operator:

I(ψ if φ) =

{

I(ψ) if I(φ) = t
⊥ otherwise

using which a condition rule is defined as:

Definition 3. A conditional rule of LE is an expression
of the form A⇐ ψ if φ.

The intuition behind a conditional rule is that its formula ψ
contributes to the value of the atom A if and only if I(φ) = t,
when this is the case we refer to the rule as being applicable.
Unfortunately the applicability operator is non-monotonic
with respect to ≤k. This has two immediate consequences:
(1) it cannot be expressed with the available operators (thus
it cannot be expressed in Fitting’s language [13]), and (2)
it is no longer possible to guarantee that the least fixpoint
TP ↑ω can be constructed. Clearly not having the applica-
bility operator can limit the extent to which the policy lan-
guage can be used; it is likely to be essential for expressing
certain policies.

Definition 4. A set of conditional LE rules P is hierar-
chically stratified in n strata as P1 ∪ ... ∪ Pn = P , when the
predicates in rules’ heads in one stratum do not appear as
heads in other strata, the predicates in ψ contain only those
from the same stratum or a lower one, and the predicates in
φ contain only predicates from the lower strata.

Unconditional rules can always be treated as conditional
rules by having t4 as φ.

Definition 5. For a stratified set of LE rules an iterated
fixpoint interpretation IP is defined as In:

I1 = TP1
↑ω

I2 = TP2∪I1↑
ω

. . .

In = TPn∪In−1
↑ω

An interpretation I can be represented by a set of facts,
where for every I ’s atom there is a conditional rule that
has that atom as a head and the body has only a Belnap
constant that corresponds to atom’s value (given by I). The
expression Pi+i ∪ Ii merges Pi+1’s rules with Ii’s facts to
create a knowledge base over which TP is applied. We have
to do this since TP is not a progressive operator, and hence
it cannot be guaranteed that for any starting interpretation
I there exists the least fixpoint TP↑

ω(I).

Proposition 1. An iterated stratified interpretation IP
of a set of hierarchically stratified rules P is minimal (with
respect to ≤k ordering) and supported.

Proof. The stratum P1 contains only unconditional rules
and thus I1 is supported and a minimal interpretation. Adding
I1’s facts to P2 will essentially disable some conditional rules
whose RHS of the applicability operator is not equal to t and
this cannot change during the fixpoint construction. The im-
mediate effect of this is that all the remaining rules can be
treated as unconditional rules and TPi

is thus monotonic and
continuous. Hence I2 is also supported and a minimal inter-
pretation since the value of atoms in I2 will not be changed
by any higher strata. Therefore by induction the last inter-
pretation In will also be supported and minimal.

In summary LE represents a novel extension of the bi-
lattice logic programming language introduced in [13] by
adding a k-nonmonotonic operator if and defining a new
stratified semantics for the fixpoint operator.

5. ENCODING A BREAK-GLASS POLICY
Rumpole encodes a break-glass policy in two parts:
(1) Evidential rules – These are encoded as LE rules

and are used to define how various pieces of information,
that either attest or disprove subjects’ and contextual at-
tributes and conditions, are combined to establish how much
is known about competences and empowerments. The LE

rules are also used to encode the break-glass rules that es-
tablish how much is known about whether the override is
permitted or denied. The semantics of these rules is given
by constructing the minimal interpretation for the rule set,
as described in the previous section.

(2) Resolution query – The evidential rules construct
an evidence base (defined by the constructed interpretation)
that tells the PDP how much truth and knowledge has been
established by them. Now, the PDP needs to be instructed
what to do based on this evidential information. A resolu-
tion query is used for this purpose as it encodes how to com-
bine the permit and deny information (and potentially other
contextual information) in order to allow or deny the over-
ride. In order to be able to encode a fine-grained resolution
query, we need to be able to constrain how much knowledge
is needed for a particular predicate and which predicates
are to be given more weight. This kind of expressivity is
not directly encodable through the LE rules. Accordingly
we have designed a query language designed for constructing
fine-grained queries over a Belnap interpretation.

This strategy of separating the knowledge base from the
actual decision is inspired by the similar approach used in
SecPAL [5].

5.1 Pre-defined Sorts and Predicate Sets
Evidential rules of any high-level break-glass policy have

to use at least the following sorts. (1) A finite sort of sub-
jects Subject; the variable Sub will be used (possibly with
superscripts and subscripts) to represent members of this
sort. (2) A finite sort of actions Action; the variable Act
will be used (possibly with superscripts and subscripts) to
represent members of this sort. (3) A finite sort of targets
Target; the variable Tar will be used (possibly with super-
scripts and subscripts) to represent members from this sort.

The predicates used in the evidential policies are split into
three disjoint sets LCore

E , LObl
E , and Laux

E . The set LCore
E

contains the predicates permit (args Subject × Target ×
Action), deny (args Subject×Target×Action), competent
(args Subject × Target × Action), and empowered (args
Subject × Target × Action). These are used to represent
competences and empowerments as well as the break-glass
rules. The set LObl

E contains the following predicates:

1. agreedObl (args Subject×Target×Action) – used to
denote whether the subject has agreed to perform the
requested obligatory action on the designated target.

2. violatedObl (args Subject×Target×Action) – used to
indicate that the specified obligation has been violated
by the subject.

3. fulfilledObl (args Subject×Target×Action) – used to
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indicate that the specified obligation has been fulfilled
by the subject.

4. activeObl (args Subject× Target×Action) – used to
denote that the given obligation is still active.

The set Laux
E holds additional auxiliary predicates used for

representing domain and access control policy specific prop-
erties.

6. EVIDENTIAL RULES

6.1 Competences and Empowerments
Rules defining competences and empowerments are used

as pieces of evidence to contribute towards establishing sub-
jects’ competence or empowerment.

Definition 6. A competence/empowerment rule is a con-
ditional rule that has a competent or empowered atom as
its head and body atoms from LCore

E ∪ LObl
E ∪ Laux

E

The interpretation of Belnap truth values for these predi-
cates is as follows:

• [competent/empowered](Sub,Tar,Act) = t – It is known
that Sub is competent/empowered to perform Act on Tar.

• [competent/empowered](Sub,Tar,Act) = f – It is known
that Sub is not competent/empowered to perform Act on
Tar.

• [competent/empowered](Sub,Tar,Act) = ⊥ – It is not
known whether Sub is competent/empowered or not to
perform Act on Tar.

• [competent/empowered](Sub,Tar,Act) = ⊤ – There is
conflict between whether the Sub can be considered as
competent/empowered to perform Act on Tar.

To illustrate how competence may be specified let us con-
sider the following example: A student is competent to assist
a patient when the student’s supervising nurse assigned that
student to the patient. One simple attempt could be:

competent(Sub,Patient, assist) ⇐

assigned(nurse, Sub, Patient) ∧ student(Sub)

However, this states that the Sub is known not to be compe-
tent, i.e. I(competent(Sub,Patient, assist) = f , whenever
the Sub does not hold the student role, i.e. I(student(Sub)) =
f . This can result in a quite different decision over the
override request from the intended, since the role atom con-
tributes directly with its truth value towards establishing
the competence’s truth value. But formulating the rule as:

competent(Sub,Patient, assist) ⇐

assigned(nurse,Sub, Patient) if student(Sub)

is more appropriate as it is used only when the Sub holds
the student role and otherwise the rule is not used.

Apart from specifying explicit competences and empow-
erment, these rules should be used to extract fine-grained
reasons why the denial was issued in the first place. To il-
lustrate this further we shall use the influential FAF access
control model by Jajodia et al. [16]. The FAF model allows
both positive and negative authorisations (dercando predi-
cate) to be specified as well as integrity constraints (error

predicate). As mentioned, the notion of competence relates
to authorisation based on the subject’s inclusion in a par-
ticular role, or his place in a more general hierarchical do-
main. On the other hand, empowerments try to capture,
not whether the subject has the necessary role, but whether
such access can take place given the context. We can capture
this analysis with the following rules:

competent(Sub, Tar,Act) ⇐

dercando(Sub, Tar,+Act)⊕ ¬dercando(Sub, Tar,−Act)

empowered(Sub,Tar,Act) ⇐ ¬error(Sub, Tar,Act)

where dercando(Sub, Tar,+Act) is a positive authorisation
and dercando(Sub, Tar,−Act) is a negative authorisation.
Thus, the competence is gauged by combining the informa-
tion about whether a positive and/or a negative authorisa-
tions were derivable. This leaves the empowered predicate
to be used as a query about whether the integrity (i.e. con-
textual) constraints have been broken, in other words the
when component of the access control decision. Thus these
constraints can be used to tell the PDP whether restrictions,
such as separation-of-duty, were broken. Other access con-
trol models such as GTRBAC [17] can be queried in the
similar fashion. Depending on the complexity of an access
control model additional Laux

E predicates may be required
to correctly capture competences and empowerments.

6.2 Break-glass Rules
Break-glass rules are represented as evidential rules defin-

ing how much is known about whether a subject is permitted
or denied to override an access control denial.

Definition 7. A break-glass rule is a conditional rule
that has permit or deny atom as its head and body atoms
from the set LCore

E ∪ Laux
E ∪ LObl

E .

Intuitively the permit predicate is used to provide evidence
to support the override whereas the deny policy represents
the evidence to support the denial of the override. Their
meaning is as follows:

• [permit/deny](Sub, Tar,Act) = t – It is known that Sub
is permitted/denied to override the access denial for Act
on Tar.

• [permit/deny](Sub, Tar,Act) = f – It is known that Sub
is not permitted/denied to override the access denial for
Act on Tar.

• [permit/deny](Sub, Tar,Act) = ⊥ – It is not known whether
Sub is permitted/denied to override the access denial for
Act on Tar.

• [permit/deny](Sub, Tar,Act) = ⊤ – There is conflict of
evidence between whether the Sub is permitted/denied
the override.

For example: a subject is permitted to override and append
to a file only when it is competent to read it and has agreed
to provide the reason for this. This example can be captured
in the following way:

permit(Sub, file, append) ⇐ competent(Sub, file, read)

if agreedObl(Sub, log, giveReason)

Notice that when the Sub is not competent this rule will
result in the interpretation saying that Sub is not permitted
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which corresponds to the only condition in the wording of
the policy. A slightly different example may say that an
override is permitted for any access if the subject is known
to be competent or if there is conflicting information about
his competence, and he has not broken any obligations:

permit(Sub, Tar,Act) ⇐ competent(Sub, Tar,Act)⊗ t4

if ¬violatedObl(Sub, Tar2, Act2)

The difference between this example and the previous one
is that this example does not use competence as a way to
dispute the override permission.

However, as has been discussed, we may need to provide
some safeguards to constrain overrides and not expose re-
sources to higher risks. The following examples capture
some of these concerns: A subject is not allowed to override
when he exceeds the override limit, and during night shifts
no overriding can take place if the subject is not empowered :

deny(Sub, Tar,Act) ⇐ t4

if overrideCount(Sub,N) ∧ exceededLimit(Sub,N)

deny(Sub, Tar,Act) ⇐ ¬empowered(Sub, Tar,Act)

if currentT ime(T )∧ nightShift(T )

These constraints are used to prevent potential abuse and
also to limit overrides when needed. For example, during
night shifts, there are fewer doctors present and thus poten-
tial emergencies caused by inappropriate overrides need to
be kept to a minimum. These policies are used to encode
evidence about a particular override request, and they are
not supposed to be used as instructions for the PDP. Thus
simply having encoded the break-glass policy is not enough
to let the PDP make the decision over a certain request.

6.3 Evidence base
Previous subsections have shown how LE ’s rules are used

to encode evidence to represent a subject’s attributes and
to encode how much is known about whether a request is
permitted or denied.

Definition 8. An evidence base EB of a high-level break-
glass policy is a set of locally stratified (see Def. 4) LE rules,
where all rules that have permit, deny, competent, empow-
ered are as in Definitions 6 and 7.

Proposition 2. An evidence base has a minimal (with
respect to ≤k ordering) supported interpretation.

Proof. Follows directly from Proposition 1.

We take the iterated stratified fixpoint of the evidence base,
IEB, as its intended semantic interpretation.

7. BREAK-GLASS RESOLUTION QUERY
Given a break-glass policy and its interpretation IEB,

Rumpole needs to enforce an override decision for a request
(s, t, a) where s ∈ Subject, t ∈ Target, and a ∈ Action. Be-
fore we define how the decision is reached, we first define an
access control query over the IEB of an encoded break-glass
policy.

Definition 9. A break-glass resolution query Ω is de-
fined as:

Ω ::= φ | Ω ∧ Ω | Ω ∨ Ω | Ω =t Ω | Ω =f Ω

φ ::= b | p(x1, ..., xn) | ¬φ | φ op φ

where p(x1, ...xn) is a ground atom, b ∈ {t, f,⊤,⊥}, and
op ∈ {∧,∨,⊕,⊗, if}.

Definition 10. A break-glass resolution query Ω is sat-
isfied by an IEB for a request (s, t, a), written as IEB |= Ω,
as specified by the structural induction (where ∗ ∈ {t, k} and
∗∗ ∈ {t, f}):

• IEB |= φ1 op φ2 iff IEB(φ1) op IEB(φ2), where op ∈
{=, 6=,≤∗,�∗}.

• IEB |= Ω1 ∧ Ω2 iff IEB |= Ω1 and IEB |= Ω2

• IEB |= Ω1 ∨ Ω2 iff IEB |= Ω1 or IEB |= Ω2

• IEB |= Ω1 =∗∗ Ω2 iff IEB |= Ω1 =∗∗ IEB |= Ω2

We have introduced the =[t/f ] operator as part of the query.
This operator will be used to hierarchically structure sub-
queries within the resolution query. Its semantic evaluation
over the IEB is defined as:

IEB |= Ω1 =t IEB |= Ω2
def
=

{

true if IEB |= Ω1

IEB |= Ω2 otherwise

IEB |= Ω1 =f IEB |= Ω2
def
=

{

false if IEB |= Ω1

IEB |= Ω2 otherwise

Informally, the operator =t says if the LHS formula is true
then the whole expression is true, otherwise the truth value
is determined by the RHS formula. The operator =f says if
the LHS is true then the whole expression is false, otherwise
the truth value is determined by the RHS formula.

A PDP can only make a decision on whether to allow an
override if it has a query to evaluate on a knowledge base.
Therefore we define an encoded break-glass policy as:

Definition 11. An encoded break-glass policy is a tuple
〈IEB,Ω〉, where IEB is the evidence base of the break-glass
policy and Ω is the break-glass resolution query.

Definition 12. A PDP will allow an override for the
request (s, t, a) according to the encoded break-glass policy
〈IEB,Ω〉, iff IEB |= Ω for the given s, t and a.

The query can return only the two classical truth values
true and false, and as the query is a propositional sentence
it is decidable. To illustrate how a simple query can be
constructed consider the following example:

Ωconservative
def
= (permit(s, t, a) = t ∧ deny(s, t, a) = f)

where s, t and a are placeholders for the corresponding val-
ues grounded by the request. This can be considered as a
conservative query as it allows an override only when it is
known that the override is permitted and when it is known
that it is not denied. We refer to it as a conservative query
because it requires the knowledge to be fully established as
known in both cases. Thus if a permission atom is unknown
or in conflict the override will be denied.

A more tolerant query may allow an override as long as
there is some evidence to support the override and no evi-
dence to imply the denial in the following fashion:

Ωtolerant
def
= (permit(s, t, a) ≥t ⊤) ∧ (deny(s, t, a) ≤t ⊥)

The last example underlines that an essential part of a reso-
lution query is stating how to treat conflicting and unknown
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permit deny
Strong resolution conflict t t

Weak resolution conflict
⊤,⊥ t
t ⊤,⊥

Strong resolution gap f f

Weak resolution gap
f ⊤,⊥

⊤,⊥ f
Strong resolution incompleteness ⊥ ⊥

Weak resolution incompleteness
⊤ ⊥
⊥ ⊤

Table 1: Conflicts, Gaps and Incompletenesses

information in order to make an override decision. Clearly
modality conflicts can occur when it is known that the re-
quest is both permitted and denied. However the expanded
truth-space introduces additional situations which can occur
when evaluating break-glass rules which are summarised in
Table 1. The resolution gap represents a situation where it
is known (fully or partially) that the request is neither per-
mitted or denied. Resolution incompleteness occurs when it
is not possible to reach a clear understanding of whether the
request is permitted or denied. Thus, a resolution query can
distinguish between these situations and potentially make
a more cautious decision based on available or unavailable
knowledge. For example in case of conflicting or unknown
evaluations, the policy may decide to trust the subject and
allow the request if the subject agrees to leave a fingerprint:

Ωlax
def
= (permit(s, t, a) ≥t ⊤) ∧ (deny(s, t, a) ≤t ⊥) =t

(deny(s, t, a) <t t) ∧ agreedObl(s, fingerPrint, take)

Intuitively, the Ωlax query allows an override if there is some
evidence that it is permitted and it is known that it is not
denied. If the first sub-query does not allow it, then the
user can leave a fingerprint and still be allowed to override
provided that at least it is known he is not denied.

However, the Ωlax query may be seen as too risky when the
override involves sensitive resources. The query can easily
be restricted to address this issue in the following manner:

Ωrestricted-lax
def
=

(permit(s, t, a) ≥t ⊤) ∧ (deny(s, t, a) ≤t ⊥) =t

(sensitive(t) ≥t ⊤) =f

(deny(s, t, a) ≤t t) ∧ agreedObl(s, fingerPrint, give)

Here the query evaluation is stopped if the target is a sensi-
tive resource and the user has not been allowed an override
before reaching this point. This results in the query only
using the risky override for non-sensitive resources.

8. RELATED WORK
One of the earliest arguments for a break-glass concept

was formulated by Povey [19], where it was argued that
there will always be an expressiveness gap between what
can be encoded and what the needs of an organisation are.
The author introduced partially-formed transactions, whose
effects can be rolled-back, and the core idea was to allow
users to perform these transactions even if they do not have
the permission but are willing to acknowledge that they are
aware of this fact. Risannen et al. [20] have similarly argued
that all requests cannot be anticipated and that many con-
ditions are not completely encodable. Their model provides

the predicate can which permits the requestor to override
a denied decision, but this has to be authorised and the
model determines who this should be. Rumpole does not
address this issue. The Break-glass concept has been intro-
duced into the Role-based Access Control (RBAC) model
within a medical information system [12, 11] where a user
is permitted to override any access as long as he acknowl-
edges the override. Brucker et al. [8] presented a generic
break-glass model where subjects are permitted to override
specific access control permissions. The access control pol-
icy consists of a partially ordered set of permissions; to each
permission, override permissions are attached. These are en-
abled by activating pre-defined emergency levels. Ardagna
et al. [3] present a break-glass model where the policies are
separated into different categories starting with the access
control policies, emergency policies and a break-glass policy.
Unless the access is explicitly denied, it can be obtained by
either finding an applicable emergency policy with obliga-
tions or, if that is not successful, the override is granted if
the system is in some emergency state and the supervisor
can be notified about the override.

These break-glass models hard-code the break-glass reso-
lution procedure into the model itself rather than, as with
Rumpole, expressing it as a declarative rule over the causes
for the denied access, which can be varied from policy to
policy. Thus a policy writer has to frame a break-policy ac-
cording to a particular model’s break-glass procedure which
in turn can limit the expressivity of the intended break-glass
policy. For example in Risannen et al.’s work, the policy
cannot explicitly define override constraints, while Brucker
et al.’s work relies on a predefined set of break-glass policies
and emergencies and unless the emergency is activated, no
override is permitted. In Ardagna et al.’s work explicit ac-
cess control denials can never be overridden, and the override
depends on correctly encoding and identifying emergency
situations. In contrast our work attempts to structure the
break-glass policy based on understanding which access con-
trol conditions were broken, thus avoiding explicit idea of an
“emergency” state; furthermore Rumpole takes advantage
of reasoning over unknown and contradictory knowledge to
permit an override even if it is unknown or contradictory
that there is an emergency. Similarly, in situations where if
it is known that the subject does not have an override per-
mission, one can still be given if the subject has not broken
any prior obligations and if the override will not break any
integrity constraints. This declarative way of expressing a
break-glass policy empowers the policy writer to represent a
more expressive break-glass policy that is not tied into any
particular break-glass procedure. Rumpole can also encode
the implicit break-glass resolution procedures present in all
surveyed break-glass models.

Obligations in access control have an established presence
[18, 7, 15]. These models augment an access control policy
with obligations and are thus aimed at formulating extended
access control policies rather than break-glass policies. The
obligation models in these languages are more expressive
than the obligations in this paper and we plan to explore
how the break-glass obligations can be made more expressive
by using these proposed solutions.

Bruns and Huth presented a policy language PBel [21,
9] which is also based on Belnap logic. PBel has a num-
ber of operators that are used to construct a policy as a
composition of sub-policies. PBel’s operators are syntactic
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constructs over Belnap operators and an additional oper-
ator a ⊃ b. This additional operator can be encoded as:
(b if a ⊗ t4) ⊕ (t4 if ¬(a ⊕ f4)). Hence LE could express
PBel’s operators if multiple if operators were used within a
rule, which would not alter the presented stratified seman-
tics in any way. PBel does not support policy variables, and
it cannot express recursive policy definitions.

9. CONCLUSION AND FUTURE WORK
This paper presents a novel break-glass model, Rumpole,

that takes a different approach to structuring a break-glass
policy which is based on identifying causes for the denial,
rather than on a set of emergencies or explicit override per-
missions. Rumpole uses a logic programming language de-
fined over Belnap logic to explicitly reason about unknown
and conflicting information. This reasoning over different
amounts of knowledge, coupled with explicit override con-
straints, provides a flexible and generic break-glass model.

Our proof-of-concept implementation implements the TP

operator over grounded rules. Although the construction of
the evidence base is polynomial with respect to the size of
the rule base, this is not scalable as the grounding process
can generate an exponential number of grounded instances.
Also the bottom-up construction creates the whole evidence
base whenever a new fact is inserted. To overcome these
issues, we have a procedure which translates Le’s rules into
a stratified Datalog program [10]. Proofs of soundness and
completeness are forthcoming. The Datalog encoding can
then take advantage of top-down polynomial resolution pro-
cedures to infer atoms’ truth values. As mentioned in the
paper, the current query resolution does not support vari-
ables in the query which is something that we are currently
expanding the query semantics with. The queries will be
then translated into a Datalog fragment as well.

Having multiple if operators in an LE rule allows it to
have any PBel [9] policy-composition expression as its body.
Similarly we are looking into translating certain fragments
of D-Algebra (specifically its P-Interpretation) [22] into a set
of LE rules. Thus we attempt to investigate to what extent
LE can be used as a general access control policy language.
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