
University of London
Imperial College of Science, Technology and Medicine

Department of Computing

Execution Mechanisms for

the Action Language C+

Robert Anthony Craven

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of the University of London and

the Diploma of Imperial College, September 2006

1

2

Abstract

The action language C+ of Giunchiglia, Lee, Lifschitz, McCain and Turner, is
the most recent and expressive member of a family of knowledge representa-
tion formalisms for reasoning about action and change over time. However,
frequently the reasoning proceeds very inefficiently, for large domains collapsing
altogether; most often the reason for this is that in determining the truth of a
fluent at a given time, one must determine the truth of all fluents at all times:
the most irrelevant information is always calculated.

This thesis is addressed to two strands of investigation: the questions of
efficiency, and of expressivity.

An alternative paradigm is proposed, inspired by the Event Calculus, which
considers only the information relevant to a given fluent’s value. Current al-
gorithms for working with C+ employ propositional satisfaction solvers; that
described in this thesis uses logic-programming throughout. Proofs of correct-
ness are provided, and the correspondence with a variant of the event calculus
is systematically investigated. (A consequence of this work is the provision of
a transition system semantics for this variant of the Event Calculus.) We also
compare the performance of our system, with the current implementation.

We would often like to be able constrain the behaviour of systems we rep-
resent depending on what has occurred in the distant past, yet in C+ there is
no convenient way of doing this. Accordingly, we make use of relations between
C+ and the formalism of ‘non-monotonic causal theories’ to broaden the ex-
pressivity of C+ action descriptions, and present an updated semantics based
on an interesting generalization of the standard transition systems. A proof of
correctness for this semantics is given.

Finally, the standard query language for C+ suffers in its expressivity, with
many interesting statements about domains unable to be made; for instance, one
cannot ask whether some fluent eventually holds. Accordingly, we investigate
the possibility of using the technique of model-checking on transition systems
defined using C+, and show how these techniques can be used to verify that
statements of standard temporal logics hold. Several different implementation
routes are examined, executed and compared, including an interface with one
representative, state-of-the-art model checker.

3

4

Acknowledgements

I would first like to express my gratitude to my supervisor, Marek Sergot, who
provided the initial stimulus for many of the ideas contained in this thesis,
and who guided their development and realization with much-appreciated and
unfailing insight, care and humour. Our conversations about matters logical
and non-logical have been sustenance without which this Ph.D. would certainly
not have existed. For discussions about many points related to themes touched
on, more or less directly, by my research, I also gladly thank Alexander Artikis.

Warm thanks to other friends in the Department of Computing: Irene Pap-
atheodorou, William Heaven, and Matthew Smith.

Jessica Frazier read parts of the thesis very closely, at a late stage, finding
numerous typographical errors and several less excusable howlers. For that, and
for much else, I thank her.

Finally, I would also like to express my thanks to my parents, who encouraged
me to pursue both the M.Sc. and the Ph.D. to which it led, and who have always
been a source of help and love when I needed it.

5

6

Contents

Abstract 3

Acknowledgements 5

1 Introduction 13
1.1 Collaborations and Contributions 14
1.2 Structure of the thesis . 15

2 Background and Related Work 17
2.1 The Action Language C+ . 17

2.1.1 Signatures and Causal Laws 18
2.1.2 Action Descriptions to Transition Systems 20
2.1.3 Causal Theories . 22
2.1.4 Action Descriptions to Causal Theories 23
2.1.5 Definiteness and Completion 25
2.1.6 Abbreviations . 26
2.1.7 Example . 26
2.1.8 Queries . 28
2.1.9 Current Implementation 30

2.2 The Red and the Green . 30
2.3 Stable Models . 34
2.4 Event Calculus . 35
2.5 Model Checking . 38

2.5.1 Bounded Model Checking 38
2.6 Related Work . 42

2.6.1 Action Descriptions and Extended Logic Programs 42
2.6.2 Dependence and Acyclicity 42
2.6.3 The Language E . 43
2.6.4 Comparative Studies . 47

3 Efficient Computation of Narratives 49
3.1 Restrictions to the Language . 50

3.1.1 Excursus on Dependence 52
3.1.2 Action Domains . 56

3.2 Logic Programs . 56
3.2.1 Signatures . 56
3.2.2 Laws . 57
3.2.3 Initial States and Actions 58

7

3.2.4 Axioms . 59
3.2.5 The Components Together 61

3.3 Proof . 62
3.4 Consistency and Models . 71
3.5 Implementation . 77

3.5.1 Queries and Explanatory Traces 78
3.6 Example—the Farmyard . 80
3.7 Other Measures to Increase Efficiency 84

3.7.1 Information Stored . 88
3.7.2 assert callterm/5 . 88
3.7.3 caused/5 . 90
3.7.4 Axioms . 93

3.8 Comparison of Implementations 95
3.9 The Zoo World . 99
3.10 Relation to the Event Calculus 105
3.11 Summary . 111

4 Distant Causation 113
4.1 Preliminaries . 113
4.2 Times . 114
4.3 Graphical Models . 116

4.3.1 Run Systems . 116
4.3.2 Commitments . 118
4.3.3 Generation of Run Systems 120
4.3.4 An Example Generation 125
4.3.5 Second Example Generation 126
4.3.6 Reduction . 128
4.3.7 Third Example—Reagan and Gorbachev 130

4.4 Interaction with nC+ . 131
4.4.1 The Language nC+timed 132

4.5 Summary . 134

5 C+ and Model Checking 135
5.1 Interlude on FSMs . 135
5.2 First Implementation . 138
5.3 Second Implementation . 140

5.3.1 Limitations . 142
5.3.2 Details of the Second Approach 145
5.3.3 Queries . 152
5.3.4 Remarks . 153

5.4 Third Implementation . 154
5.5 Comparison . 157

6 Conclusion 161
6.1 Further Work . 163

Bibliography 165

A The Farmyard Resurrection domain 169

8

B The Zoo World 173
B.1 Action Description . 173
B.2 Domain Constraints . 181

9

10

List of Figures

2.1 Transition system for a simple action description 20

3.1 Interactions between defaults and inertia 52
3.2 System for causative overkill . 85
3.3 Sample search tree; the shaded sub-tree is redundant. 87
3.4 Runs for the farmyard. 96
3.5 Computation times for the farmyard runaround. 97
3.6 Computation times for the busy farmyard. 98
3.7 A sample Zoo topography . 100
3.8 A small Zoo World . 104

4.1 A model of ΓDS
2 . 116

4.2 The (flawed) C+-style transition system for C+timed domain DS 117
4.3 Run system for the simple action description DS 118
4.4 A model of ΓDS

2 , marked with commitments 119
4.5 The graph GDS , with states and associated commitments 126
4.6 The graph GDpq . 128
4.7 A minimal run system for Dpq 130
4.8 Reagan and Gorbachev . 131
4.9 Run system for nC+timed domain DP 133

5.1 Simple action description and its transition system. 136
5.2 FSM for transition system in Figure 5.1. 137
5.3 Two runs through Figure 5.2 . 138
5.4 FSM actually defined by SMV code for domain of Figure 5.1. . . 147
5.5 Conflicts in causal laws . 148
5.6 Action description with multiple defaults. 149
5.7 Another action description with multiple defaults. 151

11

12

Chapter 1

Introduction

Action languages are logical languages used for describing and reasoning about
how the properties of a system change as a consequence of actions performed
in the system. Current action languages provide a natural treatment for the
inertia—the temporal persistence by default—of fluents; for the representation
of concurrent actions; for making fluents take certain values by default and
actions be performed a certain way by default; and for non-deterministic effects.
An example of such a language is C+ [GLL+04], and the natural treatment C+
affords for the features of domains just enumerated makes it one of the most
useful and natural action languages currently available. Sets of formulas in
C+, known as causal laws, define labelled transition systems which encode the
behaviour of the system represented.

Current methods for answering queries about domains formalized using this
action language depend on an underlying mechanism of propositional satisfac-
tion solving. One specifies the behaviour of a system, asserts certain known facts
about when actions occur, or which properties of the system represented hold
at which times, and the information is encoded and sent to a SAT-solver, which
finds models which represent runs of the system along which the known facts
are true. Crucially, this process always requires complete information about the
whole run of the system to be computed.

Yet when the systems which we represent are large, this method can become
very computationally expensive. One area in which we are interested in applying
action languages (an area where the language features can be put to particularly
good use) is that of multi-agent systems; these systems are often composed of
large numbers of interacting components, where the interactions are complex,
reflecting the scope of the component agents for behaviour which is nuanced
and intelligent. In order to make C+ more suitable for reasoning about the
properties of such large, complex systems over long runs, we should try and find
ways of making the answering of queries of C+ domains much more efficient.

To that end, we have investigated how C+ might be related to the Event Cal-
culus, and how we might retain the useful graphical semantics and expressivity
of the former whilst using a mode of more relevantly, goal-directed computation
of the sort afforded by the latter. Top-down queries to variants of the Event
Calculus expressed as logic programs make use of the laws expressing interaction
amongst fluents and actions, to consider only that information which may be
relevant to the truth of a fluent. We take the essence of this insight and apply

13

14 Chapter 1. Introduction

it to C+, to give a logic-programmed version of C+ which, for certain kinds of
query, affords several advantages over the previous computational model.

Whilst one strand of investigation of this thesis has been that of efficiency,
the other is that of expressivity. C+ as it stands is limited in ways that have
seemed to us both inconvenient and unnecessary; this affects both the causal
laws of C+ itself and the query language which is standardly used to express
queries about the systems the laws define. Thus, in causal laws as they currently
stand in C+, one may express direct relationships between fluents at the same
time, or else between fluents of one time and the immediately succeeding. Direct
relationships between actions are only expressible when the actions occur at the
same time. Yet runs through systems represented in C+ can be defined in terms
of an underlying formalism which makes no such restriction on the interactions
between different times, where events and properties can have temporally dis-
tant effects on each other. We have lifted this expressivity of the underlying
formalism up into C+, and in so doing have enabled the concise representation
of domains involving deadlines and other forms of distant interaction.

In addition to broadening the expressivity of causal laws, we have also in-
vestigated several possibilities of connecting C+ to model-checking. This has
been motivated by the desire to enable the verification that the systems we de-
scribe satisfy a broader class of properties than is now possible; the temporal
logics which are used in the model-checkers we employ are much more expres-
sive than the standard query language for C+. Applications of model-checking
to multi-agent systems have recently proliferated, and investigations made of
the verification of epistemic, deontic, and other prominent features of agen-
tive interactions. The suitability, in our eyes, of C+ and extensions of it as a
representation and specification language for multi-agent systems immediately
makes appropriate a study of ways to model-check systems defined using its
causal laws.

1.1 Collaborations and Contributions

A preliminary version of Chapter 4 of this thesis was published as [CS05]. Some
of the background material in Chapter 2 has been adapted from that paper
and [SC05a].

The thesis contributes to the study of formalisms for reasoning about ac-
tion and change. The main original results are: a demonstration of how action
descriptions of the language C+ can be represented as logic programs (Theo-
rem 3.10); an implementation of these ideas which supports several types of
useful query and which has been shown to perform better than the current
implementation on sample domains; a theorem relating a variant of the Event
Calculus to action descriptions of C+ (Theorem 3.14), which has as a corollary
a theorem relating our logic-programmed version of C+ to the version of the
Event Calculus which inspired it (Theorem 3.15); a generalization of C+ laws to
accommodate temporally distant causation; a semantics for sets of those laws
which is proved correct (Theorem 4.4); investigation of the interaction between
our generalization and nC+ [SC06], a language introducing deontic concepts into
C+; three implementations which enable model-checking for systems described
using action descriptions of C+; and an investigation of the performance of these
three implementations.

1.2. Structure of the thesis 15

1.2 Structure of the thesis

The structure of this thesis is as follows. In Chapter 2 we present the necessary
background concepts, theorems and notations upon which we shall rely for the
remaining chapters, and give a survey of related work. The bulk of this chapter
is concerned with introducing the action language C+, its syntax and semantics.
We also describe a modification of C+ which introduces deontic concepts into
the language, enabling a partitioning of states and transitions into those which
are deontically acceptable and not. We also rehearse the stable model semantics
for logic programs with negation-by-failure, which will be the semantics we shall
use for the logic programs, of various sorts, to which we refer elsewhere in the
thesis. A brief overview of model-checking is provided, and we conclude with
some references to approaches and work related to our own in the literature.

Chapter 3 shows how a significant subset of action descriptions of C+ (a sub-
set we call EC+) can be represented concisely and correctly as logic programs,
and presents various applications, theorems and implementation details in rela-
tion to this work. We begin by defining that subset of C+ to which the work
applies, and describe the syntax of its representation in Prolog. The axioms,
inspired by those for the event calculus, which are used in answering queries
of domains are explained, and a substantial result proves that stable models of
our logic programs correspond to runs through the transition systems defined
by the C+ action description. We explain the process of checking our logic pro-
grams for a necessary kind of consistency, and relate the forms of query and
other tasks supported by the implementation. Several examples are presented:
one illustrative, and one benchmark example from the literature on reasoning
about action and change. We describe techniques used to avoid recomputation
in our programs, and prove several theorems relating EC+ to a variant of the
Event Calculus.

In Chapter 4 we relax the syntax of causal laws in order to enable refer-
ence to actions temporally distant from each other, and fluents more than one
time-step distant. We show which families of causal theory the new action de-
scriptions define, and demonstrate that a new kind of graphical semantics would
be needed, as the labelled transition systems defined according to the standard
semantics would fail to capture the behaviour of the system. We supply this
new graphical semantics, show how to generate it from action descriptions, and
prove this process of generation to be correct. Several illustrations of the in-
creased expressivity we have introduced are given, and we also describe the
relationship between nC+ (a deontic variant of C+) and our new laws, showing
how a combined system is possible.

Chapter 5 turns from the causal laws used to define the behaviour of systems
to the query languages used to express properties of the systems defined. The
labelled transition systems of C+ are related to the finite state machines upon
which model checkers typically verify properties of temporal logics, and this
relation is used when we present three different bridges between C+ and model
checking. The first adapts CCalc to enable bounded model checking of formulas
of LTL; the second translates a subset of action descriptions of C+ into SMV,
the input language of a standard model checker, and thus enables formulas
both of LTL and CTL to be checked on domains; and the third implementation
removes the restrictions, passing a representation of the entire transition system
to NuSMV, for LTL and CTL model checking again. We present experimental

16 Chapter 1. Introduction

comparisons of our three approaches.
Finally, Chapter 6 is the conclusion, in which we summarize what has been

achieved and discuss directions for future work. Several Appendices contain the
code used to represent sample domains from Chapter 3.

Chapter 2

Background and Related
Work

Much of the work described in this thesis is based on the action language C+
[GLL+04] of Giunchiglia, Lifschitz, Lee, McCain and Turner, and a sound un-
derstanding of this language will be essential to the comprehension of what
follows. Accordingly, we give a rigorous, if brief, introduction to the language
here, with technical details which will be relevant in later chapters. Although
the material presented can be read without prior acquaintance with C+, the
reader is advised to consult [GLL+04] and related documents for a fuller and
more leisurely account.

After presenting the syntax and semantics of C+, and giving an account of
the very closely related language of causal theories (see [GLL+04] again, and
also [MT97] for the original presentation), we will describe an extension of C+
incorporating language features for the representation of deontic concepts: in
particular, those of permission and obligation. This extension was originally
called (C+)++ [Ser04], and was renamed in a recent paper [SC06] to nC+. We
move on to rehearse the stable model semantics for logic programs [GL88], which
is the semantics we shall use throughout the thesis to prove several theorems
equating formalizations of domains in different sorts of logic program, and be-
tween logic programs and other representations.

We then define a variant of the event calculus [KS86], an inspiration for
the logic-programmed form of C+ action descriptions which will be shown in
Chapter 3. Before describing other work related to the content of the thesis, a
short overview of model checking is given: in particular, bounded model checking,
central to Chapter 5 of the present work.

2.1 The Action Language C+
Action languages are logics for describing how a system behaves over time, as
a consequence of actions performed within the system. C+ is the most recent
member of a family of action languages which began with A [GL93], and whose
early history is surveyed in [GL98]. C+ has a number of very appealing features,
which recommended it to us as a starting-point for our developments.

17

18 Chapter 2. Background and Related Work

• It provides a very natural treatment of inertia (default persistence), which
gives intuitively desired results.

• It is easy to say many things in C+: concurrent actions, default effects,
ramifications, non-determinism, are all accommodated.

• After only a brief acquaintance with the language, one can write action
descriptions which capture the intended behaviour.

• The underlying formalism that can be provided—that of causal theories—
is simple: so in cases where there are complex interactions between causal
laws, reference to this underlying formalism quickly resolves confusion.

• There is a semantics of labelled transition systems already in place. Since
we are interested in making use of the bridge this affords to methods in
other areas of AI, this is a significant advantage.

We will give an overview of the syntax of C+; show how labelled transition
systems are defined; describe the underlying framework of causal theories and
the alternative route to transition systems this affords; present the algorithm
used to find models of an important subclass of causal theories; sketch the
current implementation; and give an outline of nC+ [Ser04], an extension to C+
incorporating deontic concepts.

2.1.1 Signatures and Causal Laws

First, the syntax of C+. We begin with σ, a multi-valued, propositional signa-
ture. Members of σ are known as constants. σ is assumed to be partitioned
into a set σf of fluent constants and a set σa of action constants. Further, the
fluent constants are partitioned into those which are simple and those which are
statically determined. We sometimes use σsmpl to stand for the simple fluent
constants, and σstat to stand for the statically determined fluent constants. And
so:

σ = σf ∪ σa = σsmpl ∪ σstat ∪ σa.

Since many of our action descriptions will contain no statically determined fluent
constants, we sometimes specify the fluent constants by writing simply σf = X,
meaning that X is the set of simple fluent constants and σstat is empty.

For each constant c ∈ σ there is a finite, non-empty set dom(c), disjoint from
σ and known as the domain of c. An atom of the signature is an expression c=v,
where c ∈ σ and v ∈ dom(c). Formulas are constructed from the atoms using
propositional connectives and a familiar syntax, with a literal as an expression
A or ¬A, for atomic A. The expressions > and ⊥ are connectives of zero arity,
with the usual interpretation. A Boolean constant is one whose domain is the
set of truth-values {t, f}, and a Boolean signature is, by extension, one all of
whose constants are Boolean. If c is a Boolean constant, we often write c for
c=t, so that where our propositional signatures are restricted to be Boolean
and we deal with no formula containing f , we may reduce our syntax to that of
standard propositional logic.

A fluent formula is a formula whose constants all belong to σf ; an action
formula is a formula which contains at least one action constant, and no fluent
constants. Note that according to these definitions, ⊥ and > are fluent formulas

2.1. The Action Language C+ 19

but not action formulas. Disjointness of σf and σa forces disjointness of the set
of fluent formulas (which we abbreviate to fmlaf) and the set of action formulas
(abbreviated to fmlaa). The disparity in the definitions of fmlaf and fmlaa

makes later definitions more compact.
An interpretation of a multi-valued propositional signature σ is a function

mapping every constant c to some v ∈ dom(c); an interpretation X is said to
satisfy an atom c=v if X(c) = v, and in this case one may write X |= c=v.
Standard structural recursions over the propositional connectives apply, and
where Γ is a set of formulas of our propositional signature, X |= Γ expresses
that X |= c=v, for every c=v in Γ. We let the expression I(σ) stand for the set
of interpretations of σ.

A static law is an expression of the form

caused F if G,

where F and G are fluent formulas. These laws are similar to the state con-
straints which appear elsewhere in computer science; their meaning is that when
the formula G is true in a state, then the formula F is caused to be true. An
action dynamic law is an expression of the same form in which F is an action
formula and G is a formula: an action dynamic law caused A if G means that
when G is true in a state, then when the system evolves from that state, it must
do so in a way which makes A true. A fluent dynamic law has the form

caused F if G after H,

where F and G are fluent formulas and H is a formula, with the restriction that
F must not contain statically determined fluents. Typically H is a combination
A∧H1, where A is an action formula and H1 a fluent formula: the fluent dynamic
law can then be understood as stating that when H is true in a state, and the
system being modelled performs action A, then if G is true in the succeeding
state, F must also be true there. (These informal glosses will be made precise
soon.) Causal laws are static laws or dynamic laws, and an action description
is a set of causal laws.

When writing causal laws, we will frequently omit the keyword caused, for
the sake of concision.

An action description D is said to be definite when

• the head of every causal law of D is either an atom or ⊥, and

• no atom is the head of infinitely many causal laws of D.

When an action description of C+ is definite in this sense, then there is a
straightforward method of finding runs through the transition system it defines,
which we will present in Section 2.1.5. All of the examples we will mention in
the current thesis are definite action descriptions.

For the purpose of illustration, consider the very simple action description
having as its Boolean signature

σsmpl = {p}, σa = {a},
σstat = {q}.

20 Chapter 2. Background and Related Work

Thus, p and q are intended to represent properties of states, and a to represent
an action, the performance of which may affect those properties. Let the laws
of the action description be:

exogenous a

q if p,

¬q if ¬p,

p if > after a,

¬p if > after ¬a.

Anticipating ourselves somewhat by assuming that action descriptions of C+
can be rendered graphically, we show the behaviour of our system in Figure 2.1.
The first two (static) laws make q’s value dependent on that of p. The second

¬p,¬qp, q

¬a,

a

a ¬a

Figure 2.1: Transition system for a simple action description

two laws make the value of p change, depending on whether a is performed or
not. We see that static laws can be used to describe how the effects of actions
ramify.

2.1.2 Action Descriptions to Transition Systems

As we have hinted, every action description of C+ defines a labelled transition
system. In general, transition systems are graphs, whose vertices represent the
states of some system, and where an edge between two vertices represents that
the system may evolve from the one state to the other. The edges are typically
called transitions, and where the transitions are labelled, the labels usually
denote the performance of some action, or the execution of some computation,
which effects the given transition between states. This sort of graphical structure
is, of course, ubiquitous in computing and artificial intelligence.

The precise form of the transition systems with which we will deal in the
current thesis will vary, usually as the language used to define them accrues
special features. It is therefore difficult even to define an underlying template
to which all labelled transition systems must conform. So we relativize, as
follows.

Definition 2.1 A transition system for C+ is a triple (S, L, R), where

• S is a set of states, sometimes called vertices;

• L is a set of labels;

• R is a set of transitions, R ⊆ S × L× S, sometimes called edges. y

The purpose of this section is to describe how each action description D of
C+—with signature σf ∪ σa—defines a labelled transition system LD, of the

2.1. The Action Language C+ 21

form defined above. But we will first note that states will turn out to be in-
terpretations of σa which satisfy certain constraints, and the set of labels will
be the set I(σa). The definitions and theorems in this section are mostly taken
from [Ser04].

Suppose we are given an action description D of C+, with signature σf ∪σa.

Definition 2.2 We define:

Tstatic(s) =def {F | F if G ∈ D, F ∈ fmlaf , s |= G},
E(s, e, s′) =def {F | F if G after H ∈ D, s ∪ e |= H, s′ |= G},

A(s, e) =def {A | A if H ∈ D, A ∈ fmlaa, s ∪ e |= H},
Simple(s) =def {c=v | c ∈ σsmpl, s |= c=v}, y

With these preliminary definitions, we can now define the transition systems
defined by C+ action descriptions. We first need to define our states.

Definition 2.3 Let D be an action description of C+. An interpretation s of
σf is a state of D iff

{s} = {s′ ∈ I(σf) | s′ |= Tstatic(s) ∪ Simple(s)}. y

In words, s is a state when s satisfies the set of forumlas Tstatic(s) ∪ Simple(s),
and there is no other interpretation of σf which satisfies this set. We move on
to the transitions defined by C+ action descriptions.

Definition 2.4 Let D be an action description of C+, with signature σ. Sup-
pose s, s′ ∈ I(σf), and e ∈ I(σa). We say that (s, e, s′) is a transition of D iff s
is a state (according to the preceding definition) and:

• {s′} = {s′′ ∈ I(σf) | s′′ |= Tstatic(s′) ∪ E(s, e, s′)};

• {e} = {e′ ∈ I(σa) | e′ |= A(s, e)}. y

Again, in words: (s, e, s′) is a transition when s is a state; where s′ satisfies
Tstatic(s′)∪E(s, e, s′) and no other interpretation does so; and where e satisfies
A(s, e) and no other interpretation in σa does so.

The transition systems defined by a C+ action description have the form
given above in Definition 2.1: the component S is the set of states defined by
the action description D; the possible labels L are found in I(σa); and R is the
set of transitions, as given in Definition 2.4.

Theorem 2.5 If (s, e, s′) is a transition of an action description D, then s′ is
a state.

Proof: This is Proposition 4 of [Ser04]. y

At a first glance the reason that these definitions take precisely the form they
do is far from obvious, and they are apt to seem somewhat arbitrary. Matters
become clearer when we examine the relationship of action descriptions of C+
to causal theories.

22 Chapter 2. Background and Related Work

2.1.3 Causal Theories

The language of causal theories ([MT97], [GLL+04]) is a more general-purpose,
non-monotonic formalism which can be seen as underlying the action language
C+. (The manner in which it is non-monotonic is not entirely straightforward:
see [SC05a] for details.) Causal theories are very closely related to Reiter’s
Default Logic [Rei80], as Section 7 of [GLL+04] shows, and it is partly their scope
for a highly nuanced representation of default behaviour which brings causal
theories close to C+. It will be seen that C+ action descriptions correspond to
families of certain forms of causal theories; but this correspondence does not
use the full expressivity of causal theories, which is something we exploit in
Chapter 4 when we draw on more of their expressive resources to broaden C+.

In causal theories we start, as with C+, with a multi-valued propositional
signature σ. In the language of causal theories, however, there is no distinction
between fluent constants and action constants—members of σ are undifferen-
tiated. Formulas are built up from atoms c=v using standard propositional
connectives, again including > and ⊥ as connectives of zero arity.

A causal rule is an expression of the form

F ⇐ G,

where F and G are formulas of the underlying, multi-valued propositional sig-
nature. Such expressions are related to the (almost) natural language statement
“if G, then the fact that F is caused”; perhaps they could better be paraphrased
as “if G, then there is a reason for F to be true (and F is true)”. A causal
theory is a set of causal rules.

Now let Γ be a causal theory, and take X to be an interpretation of its
underlying propositional signature. The reduct of Γ with respect to X is defined
as

ΓX =def {F | F ⇐ G ∈ Γ and X |= G}.

X is a model of the causal theory Γ, written X |=C Γ, if X is the unique
model of ΓX . (This uniqueness constraint is related to the role of singletons in
Definition 2.4.)

For an illustration of the preceding definitions, consider the causal theory
T1, with underlying Boolean signature {p, q}:

p⇐ q

q ⇐ q

¬q ⇐ ¬q

There are clearly four possible interpretations of the signature:

X1 : p 7→ t, q 7→ t

X2 : p 7→ t, q 7→ f

X3 : p 7→ f , q 7→ t

X4 : p 7→ f , q 7→ f

2.1. The Action Language C+ 23

and it is clear that

TX1
1 = {p, q} whose only model is X1

TX2
1 = {¬q} which has two models

TX3
1 = {p, q} whose only model is X1 6= X3

TX4
1 = {¬q} which has two models

In only one of these cases—that of X1—is it true that the reduct of the causal
theory with respect to the interpretation has that interpretation as its unique
model. Thus X1 |=C T1 and X1 is the only model of T1.

For logical properties of causal theories, and relations to modal logic, see
[SC05b] (or its expanded version [SC05a]); also see [EL06].

2.1.4 Action Descriptions to Causal Theories

Action descriptions of C+ can be seen as shorthand for families of causal theories.
The index set is the non-negative integers, which represents the time for which
the system runs.

Thus to every action description D of C+—with signature σ—and non-
negative integer t, there corresponds a causal theory ΓD

t . The signature of
ΓD

t contains the constants c[i],1 such that

• i ∈ {0, . . . , t} and c ∈ σf , or

• i ∈ {0, . . . , t− 1} and c ∈ σa,

and the domains of such constants c[i] are kept identical to those of their con-
stituents c in the signature of the action description. Where σ is the signature of
the C+ action description D, we will let σm denote the signature of the causal
theory ΓD

m. The expression F [i], where F is a formula, denotes the result of
inserting [i] after every occurrence of a constant in F . The causal rules of ΓD

t

are:
F [i]⇐ G[i],

for every static law in D and every i ∈ {0, . . . , t}, and for every action dynamic
law in D and every i ∈ {0, . . . , t− 1};

F [i + 1]⇐ G[i + 1] ∧H[i],

for every fluent dynamic law in D and every i ∈ {0, . . . , t− 1}; and

c[0]=v ⇐ c[0]=v,

for every simple fluent constant c and v ∈ dom(c).
We have already defined the labelled transition systems which are deter-

mined by C+ action descriptions, in a way which did not depend at all on the
formalism of causal theories. The same transition systems can be defined much
more succinctly using causal theories, however, and it is often much more easy
when trying to imagine the systems defined by action descriptions, to think in
terms of the causal-theoretic definitions rather than those given in Section 2.1.2.

1These are written as i : k in [GLL+04]; we find the current notation easier to read.

24 Chapter 2. Background and Related Work

In the current context we will identify interpretations of the underlying propo-
sitional signature of D with the sets of atoms they satisfy. Where i is a non-
negative integer and s an interpretation, we can write s[i] for the result of
suffixing [i] to every constant of an atom made true by the interpretation (in
symbols, {c[i]=v | s |= c=v}).

We trespass on our previous definitions:

Definition 2.6 Let D be an action description of C+, with signature σ.

• A state is any s ∈ I(σf), such that s[0] |=C ΓD
0 ;

• a transition is any triple (s, e, s′) ∈ I(σf)× I(σa)× I(σf) such that

s[0] ∪ e[0] ∪ s′[1] |=C ΓD
1 . y

According to this definition, the component S of the labelled transition systems
defined by C+ action descriptions is the set

{s | s ∈ I(σf), s[0] |= ΓD
0 };

the set of labels L is I(σa) as before; and the set of edges is the set

{(s, e, s′) | s, s′ ∈ I(σf), e ∈ I(σa), s[0] ∪ e[0] ∪ s′[1] |= ΓD
1 }.

Theorem 2.7 Let D be an action description. Then for any transition (s, e, s′),
s′ is a state, where transitions and states are both defined according to Defini-
tion 2.6.

Proof: This is Proposition 7 of [GLL+04]. y

We now have two alternative definitions for the labelled transition systems
defined by our action descriptions. The following theorem shows they coincide.

Theorem 2.8 Let D be an action description of C+, with signature σ. Then:

(i) s is a state of D according to Definition 2.3 iff s is a state of D according
to Definition 2.6;

(ii) (s, e, s′) is a transition of D according to Definition 2.4 iff (s, e, s′) is a
transition of D according to Definition 2.6.

In other words, Definitions 2.3, 2.4 and 2.6 coincide.

Proof: This is essentially Theorem 9 of [Ser04], though the proof has to be
changed slightly in order to accommodate the fact that the exogeneity of an ac-
tion constant is not, in the most recent versions of C+, a feature of the signature,
but is signalled by the presence of action dynamic laws caused a=v if c=v. y

Let ΓD
t be the causal theory generated from the action description D and

non-negative integer t as described above. Let s0, . . . , st be interpretations of
σf and e0, . . . , et−1 be interpretations of σa. Then using the notation above, we
can represent interpretations of the signature of ΓD

t in the form

s0[0] ∪ e0[0] ∪ s1[1] ∪ e1[1] ∪ · · · ∪ et−1[t− 1] ∪ st[t] (2.1)

The following result holds.

2.1. The Action Language C+ 25

Theorem 2.9 An interpretation of the signature of ΓD
t is a model of ΓD

t iff
each triple (si, ei, si+1), for 0 6 i < t, is a transition.

Proof: Proposition 8 of [GLL+04]. y

Let D be an action description of C+. A run of length t through this transition
system is defined to be a sequence

(s0, e0, s1, e1, . . . , et−1, st) (2.2)

such that all triples (si, ei, si+1), for 0 6 i < t, are members of the transition
system.

Theorem 2.10 Let D be an action description and t any non-negative integer.
Then the sequence (2.2) is a run of the transition system iff the interpretation
(2.1) is a model of the causal theory ΓD

t .

Proof: First, assume we have a run of the transition system of length t. Then
every triple (si, ei, si+1), for 0 6 i < t, is a transition, and so by Theorem 2.9
the interpretation (2.1) is a model of ΓD

t .
Alternately, suppose that (2.1) is a model of the causal theory ΓD

t , Then clearly,
each triple (si, ei, si+1), for 0 6 i < t, is a transition, and so the sequence (2.2)
is a run of the transition system defined by D. y

2.1.5 Definiteness and Completion

A causal theory Γ is said to be definite when:

• the head of every causal rule is either an atom or ⊥, and

• no atom is the head of infinitely many causal rules.

Clearly this definition is related to that of the definiteness of an action de-
scription of C+, given in Section 2.1.1. Indeed, it turns out that when an action
description D is definite, then the causal theories ΓD

t , for 0 6 t, are also definite.
By a process similar to the Clark completion used in the semantics of logic

programming [Cla78], one can reduce the problem of finding models of a definite
causal theory, to that of finding the models of a set of formulas of propositional
logic. The latter problem can be shipped out to a propositional satisfaction
solver. So, in the light of Theorem 2.10, we have a means of finding runs of length
t 6 0 through the transition system defined by a definite action description of
C+.

Let Γ be a definite causal theory, of which we wish to find the completion,
and let Γ have signature σ. An atom c=v of σ is said to be trivial when
dom(c) = {v}: in this case any interpretation of σ must assign to c the value v.
(We also call the constant c trivial in this case.) We let Trivial(σ) be the set of
atoms c=v of σ such that c is trivial. For each non-trivial atom c=v of σ, the
completion formula is:

c=v ≡ G1 ∨ · · · ∨Gn,

where
c=v ⇐ G1, . . . , c=v ⇐ Gn

26 Chapter 2. Background and Related Work

are all the rules in Γ with head c=v. The completion of Γ is the set of all
completion formulas of all non-trivial atoms in σ, together with all formulas ¬F
for each rule

⊥ ⇐ F

in Γ. We let comp(Γ) be the completion of Γ, so that in symbols:

comp(Γ) =def {c=v ≡ G1 ∨ · · · ∨Gn | c=v ∈ Trivial(σ),
∀G(c=v ⇐ G ∈ Γ↔ ∃i(0 6 i 6 n ∧G = Gi))}

∪ {¬F | ⊥ ⇐ F ∈ Γ}

Theorem 2.11 The models of a definite causal theory Γ are precisely the mod-
els of its completion.

Proof: Proposition 6 of [GLL+04]. y

2.1.6 Abbreviations

When working with C+ it is best to make use of the many abbreviations which
have been introduced, to enable the compact representation of system behaviour.
We tabulate some of the most useful here; the reader is referred to Appendix B
of [GLL+04] for the full list.

We divide the abbreviations according to whether they apply to static, fluent
dynamic, or action dynamic rules.

Abbreviation Longhand

default F F if F
default F if G F if F ∧G
F F if >
constraint F ⊥ if ¬F

F after H F if > after H
inertial c (c ∈ σf) {c=v if c=v after c=v | v ∈ dom(c)}
nonexecutable F ⊥ if > after F
nonexecutable F if G ⊥ if > after F ∧G

A may cause F if H (F ∈ fmlaf) F if F after H ∧A
A causes F if H (A ∈ fmlaa) F if > after H ∧A
constraint F after H ⊥ if ¬F after H
rigid c (c ∈ σf) {⊥ if ¬c=v after c=v | v ∈ dom(c)}
always F ⊥ if > after ¬F
default F if G after H F if F ∧G after H

A A if >
A causes B if H (A,B ∈ fmlaa) B if H ∧A
A may cause B if H B if B ∧H ∧A

2.1.7 Example

To illustrate some of the expressive capabilities of C+, we now include an ex-
ample, the ‘Farmyard Resurrection’ domain.

2.1. The Action Language C+ 27

At its core, this is a version of the Yale Shooting Problem [HM87]. There
are two agents, Bill and Turkey, who can be either alive or dead, and either
smiling or not; the dead do not smile. Bill and Turkey may walk between three
locations: the barn, field, and house. A gun, which may be loaded or not, can
point at any of the three locations, or nowhere (represented as none). If the gun
is aimed at one of the locations, that location becomes the target ; loading the
gun causes the target to revert to none. If the gun is shot whilst pointing at a
location, anything alive there is killed. The performance of a miracle on either
Bill or Turkey makes them smile (and as a ramification, brings them back to
life).

Our signature will be as follows (x ranges over {Bill,Turkey}):

σsmpl = {alive(x), loaded, smiling(x), target, loc(x)}
σstat = {}

σa = {aim,miracle(x), load, shoot,walk(x)}

All constants are Boolean (domain {t, f}), except:

dom(loc) = {barn,field, house}
dom(target) = {barn,field, house,none}

dom(aim) = dom(walk) = {barn,field, house, f}

Here is the action description. x ranges over {Bill,Turkey} and l ranges over
{barn,field, house}.

inertial c (for every c ∈ σf)
exogenous a (for every a ∈ σa)
nonexecutable walk(x)=l if loc(x)=l

nonexecutable walk(x)=l if ¬alive(x)

alive(x) if smiling(x)
¬smiling(x) if ¬alive(x)
shoot causes ¬alive(x) if loaded ∧ target=l ∧ loc(x)=l

shoot causes ¬loaded if loaded
load causes loaded
walk(x)=l causes loc(x)=l

miracle(x) causes smiling(x) if ¬alive(x)
aim=l causes target=l

load causes target=none

The inertial law at the top expresses our requirement that values of fluent
constants should persist through time, unless there is a reason for them to
change. The nonexecutable laws place constraints on when agents may walk:
one cannot walk to where one is already; to walk one must be alive.

Two static laws follow, which guarantee that only those who are alive may
smile. The second static law is not redundant: in general one cannot take the
contrapositive of causal laws and keep the same defined transition system.

28 Chapter 2. Background and Related Work

The fluent dynamic laws express the various effects of performing actions,
and should be more or less self-explanatory. Actions which are quite complex
may be performed in this system: for example, the gun may be loaded as the
Turkey walks into the barn; or Bill may move to the field, as the Turkey moves
from there into the house: concurrency is easily supported, and the effects of
concurrent actions work out as one would wish.

In the absence of a law

nonexecutable aim=l ∧ load,

it might be thought that the two last fluent dynamic laws are inconsistent. In
reality, the effect is simply to remove edges e from the transition system such
that

e |= aim=l ∧ load.

Clearly, all transitions (s, e, s′) are such that:(
(s |= target=l ∧ loc(x)=l ∧ loaded) ∧
(e |= walk(x)=f ∧ shoot)

)
→

s′ |= ¬alive(x)

Investigation shows that it is not true that all runs (s0, e0, . . . , sn) such that

s0 |= target=l ∧ loc(x)=l ∧ loaded
ei |= walk(x)=f ∧ aim=f ∧ ¬load (0 6 i < n)

en−1 |= shoot

must have sn |= ¬alive(x), as one might expect. For if n > 1, then we could
have

e0 |= shoot and e1 |= miracle(x) ∧ shoot(x)

in which case sn |= alive(x), as a simple derivation, or experimentation with
CCalc, will show. We do however have the weaker property that when a run
(s0, e0, . . . , sn) satisfies

s0 |= target=l ∧ loc(x)=l ∧ loaded
ei |= walk(x)=f ∧ aim=f ∧ ¬load ∧ ¬miracle(x) (0 6 i < n)

en−1 |= shoot

then sn |= ¬alive(x). This is to say that the problem which is highlighted in
the ‘Yale Shooting’ domain is treated satisfactorily by this formalization in C+.

2.1.8 Queries

The current implementation of C+, CCalc, which we will describe in Sec-
tion 2.1.9, allows one to specify action descriptions in C+ and then to query
the domains described. C+ itself is not a query language: laws of C+, when
conjoined to an action description, simplify modify the structure of the labelled
transition system defined, and are not themselves evaluated on that transi-
tion system. This means that a separate query language is needed in which

2.1. The Action Language C+ 29

to express statements about the systems defined by causal laws, and CCalc
currently accepts queries stated in the language we give below. (The authors of
[GLL+04], though they describe the nature of the query language and how it is
implemented, do not formalize it.)

For each query, the user specifies which lengths of paths through the transi-
tion system he wishes to consider, together with a set of fluent and action atoms
indexed by times in a way consistent with the signature: the intention is to find
the shortest paths of the length specified which satisfy the atoms which form
the substance of the query. Since the length of the path may vary, a special
time-index is provided to index the maximum time—thus making the query
language very suitable for planning tasks (amongst others). We will render this
special time-index as max. Additionally, each query is labelled with a unique
identifier, a natural number.

Queries can therefore be considered as triples (L, T,N), where

• L ∈ N is a unique identifier;

• T is [tmin, tmax], where this denotes an interval of N and tmin 6 tmax, or
T is [t,∞), t ∈ N;

• A is a set of atoms c[i]=v, where i ∈ T , and if c ∈ σa and T = [tmin, tmax],
then i < tmax; or else i is max and c ∈ σf .

Given this language, planning queries would typically take the form

(n, T, {c0[0]=v0, . . . , cm[0]=vm, c′0[max]=v′0, . . . c
′
n[max]=v′n}),

where the initial state s0 and goal state stmax
should satisfy

s0 |=
m∧

i=0

ci=vi and stmax |=
n∧

i=0

c′i=v′i;

and ‘postdiction’ queries should take the form

(n, T, {c0[0]=v0, . . . , cm[0]=vm})

with the initial state having to make the ci=vi true, as before.
An atom c[i]=v is true of a path (s0, e0, . . . , sn) if i < n and si ∪ ei |= c=v,

or if i = n and si |= c=v. An expression of the form c[max]=v is true of a path
when sn |= c=v. A query (L, T,N) is true of a path π when the length of π is
in T and π satisfies all members of N .

Clearly, the query language supported by CCalc, of which we have given a
brief account here, is only one of many possible formal languages which may be
evaluated on structures defined by C+ action descriptions. The query language
we have just described is evaluated on paths through the transition systems
LD of an action description D. We could also evaluate a number of temporal
logics over such structures (a fact we rely on in Chapter 5, when we connect
model-checking and temporal logics to C+), or connect action descriptions to
automata theory and process algebra (possible lines of future research).

30 Chapter 2. Background and Related Work

2.1.9 Current Implementation

The system CCalc, maintained by people at the University of Texas, supports
a wide range of tasks relating to C+ and the language of causal theories.

Action descriptions of C+ are placed in source files, with the signature of
the language able to be defined using various time-saving shorthands. The
abbreviations given above in Section 2.1.6 can be used, as well those remaining
in [GLL+04]. Users may also submit queries expressed in the language defined
in Section 2.1.8, so that CCalc can find paths of minimal length through LD

which satisfy them.
The signature, action description and queries are loaded into a Prolog

interface which is running CCalc. The action description D is converted to the
causal theory ΓD

1 , comp(ΓD
1) is calculated, and the resulting set of propositional

formulas is converted into conjunctive normal form (CNF). Suppose we have
some query (L, T,N). CCalc takes each t ∈ T in increasing order, making a
representation of a path of length t through the transition system by ‘shifting’
the clauses derived from comp(ΓD

1).2 Then information about the query is added
to these clauses: the set QT,N , which includes

• every c[i]=v ∈ N , with i ∈ N;

• the atom c[t]=v, for every c[max]=v ∈ N .

The resulting set of formulas, which contains information about the transition
system and information about the query, and can be written

cnf(comp(ΓD
t) ∪QT,N),

is passed to a propositional satisfaction solver. Models of the propositional
clauses are also models of the causal theory ΓD

t . When CCalc finds a non-
negative integer t ∈ T such that there is a model of cnf(comp(ΓD

t)∪QT,N), then
it outputs all such models. They correspond to the shortest paths through the
transition system LD which satisfy the constraints represented in the query.

Note that to solve any query, CCalc must find out the values of all fluents
along a path through the transition system. So, when one is interested in
long histories of complex systems, computations using CCalc quickly become
infeasible. This failing signals the opportunity we exploit in Chapter 3.

2.2 The Red and the Green

To use a language such as C+ for reasoning about certain kinds of multi-agent
system, where heterogeneity of the agents and openness of the group of agents
may bring with it agentive behaviour which is not in conformity to the protocol
of the system, it frequently becomes necessary to introduce deontic concepts into

2This process is simply a matter of repeatedly incrementing the time-stamps in these
clauses. It relies, at bottom, on the fact that ΓD

k+1 = (ΓD
k ∪ΓD

∗) for all k, where ΓD
∗ is simply

(ΓD
1 − ΓD

0) with the time-stamps incremented by k. Thus letting (ΓD
t)[+k] denote the causal

theory obtained from ΓD
t by changing any constant c[i] occurring in ΓD

t to a constant c[i+k],
we have that

ΓD
k = ΓD

0 ∪
k−1[
i=0

(ΓD
1 − ΓD

0)[+i].

2.2. The Red and the Green 31

the language. Then protocols may be expressed, broken, and the concomitant
violation represented. Such an extension of the basic language has been provided
in [Ser04], where it was called (C+)++; an updated version of that subset of the
extension in which we are interested was described in [SC06], and was renamed
nC+; we give a brief account here.

nC+ provides a means of specifying what the permitted or acceptable states
and transitions of the system are. We add to C+ permission laws:

• a state permission law has the form

n : not-permitted F if G,

for F,G ∈ fmlaf , and where n is an (optional) identifier;

• an action permission law has the form

n : not-permitted A if G,

where A ∈ fmlaa, G ∈ fmlaf , and with n as before.

The significance of these laws should be intuitively obvious: a state permission
law of the form given expresses that whenever a state satisfies G, then if F is
also true in the state, something has gone wrong, the system is in a state of
violation: in these circumstances, F is not permitted. An action permission law
of the form given qualifies the deontic status of transitions: where G is true in
a state, then the action A is bad, not permitted. These accounts will be made
firmer.

Structure is added to the labelled transition systems defined by our action
descriptions, to represent the information held in the permission laws.

Definition 2.12 A transition system for nC+ is a tuple (S, L, R, Sg, Rg), where
(S, L, R) is a transition system for C+ (as given in Definition 2.1), and

• Sg ⊆ S is the set of green states, understood as those which are permitted,
acceptable, ideal, deontically ideal, legal, etc.;

• Rg ⊆ R is the set of green transitions, which maybe understood as the
transitions which are good, permitted, and so on.

We sometimes also refer to the complements of the green states and transitions:

• Sr ⊆ S, where Sr = S − Sg, is the set of red states;

• Rr ⊆ R, where Rr = R−Rg, is the set of red transitions. y

Let D be an action description of nC+ (there is no change to the signatures).
The sets S, L and R are defined exactly as for C+, using that subset of the laws
of D which do not contain the keyword not-permitted. The permission laws
of nC+ action descriptions do not alter the structure of the defined transition
system, but are used to determine the sets Sred and Rred.

Definition 2.13 Let D be an action description of nC+, with signature σ. Let
Dperm be the subset of permission laws of D. The transition system defined
by D is the tuple (S, L, R, Sg, Rg), where S is the set of states, R the set of

32 Chapter 2. Background and Related Work

transitions, defined by D−Dperm according to Definitions 2.3 and 2.4; where L
is I(σa), and where:

Sr =def {s ∈ S | ∃ not-permitted F if G ∈ D (s |= F ∧G)},
Sg =def S − Sr

Rr =def {(s, e, s′) ∈ R | ∃ not-permitted A if G ∈ D (s ∪ e |= G, e |= A)}
∪ {(s, e, s′) ∈ R | s ∈ Sg, s′ 6∈ Sg}

Rg =def R−Rr y

So, adding permission laws to a C+ action description effects a ‘colouring’ of
the transition system, according to which states and transitions are shaded red
or green. Any state s such that s |= F ∧G for some state permission law

not-permitted F if G

is coloured red; all other states are green by default. Then, any transition
(s, e, s′) such that there is an action permission law

not-permitted A if G

with s∪e |= G and e |= A is coloured red. All other transitions are coloured red,
except where this would contravene the so-called ‘green-green-green’ constraint
(ggg, for short): for all transitions (s, e, s′), if s ∈ Sg and e ∈ Rg, then s′ ∈ Sg.
The rationale behind ggg is that whenever a system is in a permitted state,
and performs an action which violates no deontic laws, the state which results
from such a transition should also be permitted. (For more remarks on this
justification, see [SC06].)

We can translate action descriptions of nC+ into the language of causal
theories, as follows. Let D be an action description and t a non-negative integer.
The translation of the C+-component, D − Dperm, proceeds as normal. For
the permission laws, we introduce into the signature of ΓD

t two new constants
status and trans, both having domain {green, red}. For every state permission
law not-permitted F if G in Dperm, we include the causal rules

status[i]=red⇐ F [i] ∧G[i],

for all i with 0 6 i 6 t. To make states green by default, we include the rules

status[i]=green⇐ status[i]=green,

for all i with 0 6 i 6 t. For a law not-permitted A if G, we include the causal
rules

trans[i]=red⇐ A[i] ∧G[i],

for all i with 0 6 i < t. We include rules

trans[i]=green⇐ trans[i]=green,

for all i such that 0 6 i < t to make transitions green by default, and finally, to
enforce the green-green-green constraint, we include

trans[i]=red⇐ status[i + 1]=red ∧ status[i]=green,

2.2. The Red and the Green 33

for all i with 0 6 i < t.
Let D be an action description of nC+, and (S, L, R, Sg, Rg) the defined

labelled transition system. We define the function colour : S ∪R→ {red, green}
by:

colour(x) =
{

green, if x ∈ Sg or x ∈ Rg;
green, otherwise.

The following result shows that there is a correspondence between models of
ΓD

t , for an action description D of nC+, and runs through the transition system
defined by D, in such a way that the constants status[i] and trans[i] encode
details of the colouring of states and transitions.

Theorem 2.14 Let D be an action description of nC+, with signature σ. Then,
(s0, e0, . . . , st) is a path through the transition system defined by D iff

(s0[0] ∪ {status[0]=colour(s0)}) ∪ (e0[0] ∪ {trans[0]=colour(e0)}) ∪ · · ·
· · · ∪ (st[t] ∪ {status[t]=colour(st)})

is a model of the causal theory ΓD
t (signature σt ∪ {status[i], trans[i′] | (0 6 i 6

t) ∧ (0 6 i′ < t)}).

Proof: By induction on t.

(Base case: t = 0.) We want to show that s0 is a state if and only if s0[0] ∪
{status[0]=colour(s0)} is a model of ΓD

0 . First assume that s0 is a state. Then
clearly s0[0] |=C ΓD−Dperm

0 . If s0 ∈ Sr, then there is a state permission law

not-permitted F if G (2.3)

(ignoring the identifier) in D with s0 |= F ∧G. But then as

status[0]=red⇐ F [0] ∧G[0]

is in ΓD
0 , then (ΓD

0)s0[0]∪I must contain status[0]=red (where I is either the set
{status[0]=red} or {status[0]=green}, interpreting the special constant status[0]).
Thus clearly s0[0] ∪ {status[0]=red} is a model of ΓD

0 . If, instead, s0 ∈ Sg, then
there is no law (2.3) in Dperm, and so there is no rule in ΓD

0 with status[0]=red
as its head. As

status[0]=green⇐ status[0]=green

is in ΓD
0 , then s0[0] ∪ {status[0]=green} is a model of ΓD

0 . Either way, then,
s0[0] ∪ {status[0]=colour(s0)} is a model of ΓD

0 .
Alternately, suppose that (s0[0] ∪ {status[0]=colour(s0)}) ∈ models(ΓD

0). Then
as there is no rule in ΓD

0 with c[0]=v (for c 6= status) as its head and the constant
status appearing in its body, it follows easily that s0[0] is a model of ΓD−Dperm

0 ,
and thus s0 is a state, i.e. a run of length 0.

(Inductive step: assume true for t = k, prove for t = k + 1.) First assume the
result for t = k. Now let (s0, e0, . . . , sk, ek, sk+1) be a run through the transi-
tion system defined by D. Then so is (s0, e0, . . . , sk), and so by the inductive
hypothesis

(s0[0] ∪ {status[0]=colour(s0)}) ∪ · · · ∪ (sk[k] ∪ {status[k]=colour(sk)})

34 Chapter 2. Background and Related Work

is a model of ΓD
k (we will call this model M). By Theorem 2.10, we have that

(s0, e0, . . . , sk, ek, sk+1) is a model of ΓD−Dperm

k+1 . Let Mk+1 be

Mk ∪ (ek[k] ∪ {trans[k]=colour(ek)})
∪ (sk+1[k + 1] ∪ {status[k + 1]=colour(sk+1)}),

so that Mk+1 is an interpretation of the signature of ΓD
k+1. Then a case analysis

of the possibilities for the colours of ek and sk+1 shows that (ΓD
k+1)

Mk+1 must
contain trans[k]=x iff colour(ek) = x, and must contain status[k + 1]=x iff
colour(sk+1) = x. Thus Mk+1 is the only model of (ΓD

k+1)
Mk+1 , and so Mk+1 |=C

ΓD
k+1.

For the other direction, assume

(s0[0] ∪ {status[0]=colour(s0)}) ∪ · · ·
· · · ∪ (sk+1[k + 1] ∪ {status[k + 1]=colour(sk+1)})

be a model of ΓD
k+1. Then (s0[0], e0[0], . . . , sk[k], ek[k], sk+1[k +1]) is a model of

ΓD−Dperm

k+1 , essentially as no causal rule in ΓD−Dperm has a head c[i]=v for c ∈ σ,
but a body containing a constant status[j] or trans[j′].
Thus on the assumption that result holds for t = k, we have shown it for
t = k + 1. And so our result holds for all t, by induction. y

2.3 Stable Models

In Chapter 3 we will bring together logic programming and C+, finding ways
of casting C+ action descriptions into a form closely related to that of the
Event Calculus (see Section 2.4 for background material on the latter). In
describing the nature of the relation between these two formalisms, we will need
to have chosen a semantics for the logic programs, so that action descriptions
and the logic programs into which we shall translate them can be precisely
compared. We here give the necessary details and notation for our choice of
a logic-programming semantics, the stable model semantics ([GL88]) for logic
programs with negation. In the following, we assume some familiarity with
the nature and notation of logic programming. (If required, the Gelfond and
Lifschitz paper [GL88] gives a rough overview of additional details; for a more
comprehensive treatment, consult [Llo87] or [Hog90].)

The motivation behind the stable model semantics was to enlarge the set of
logic programs which had a uniquely defined declarative semantics, and to do
so in a natural way. Logic programs are to be seen as sets (possibly infinite) of
ground rules

A← A1, . . . , Am,¬B1, . . . ,¬Bn (2.4)

where A, the Ai, and the Bi are atomic, and where there need be no positive
literals Ai or negative literals ¬Bi at all (there may also be none of either). As
usual with semantics for logic programs, we consider only Herbrand models of
the language. Let M be a set of atoms, and P a set of program clauses of the
form (2.4). The reduct of P with respect to M , written PM , is defined to be

{A← A1, . . . , Am | (A← A1, . . . , Am,¬B1, . . . ,¬Bn) ∈ P ∧ ∀i 6 n(Bi 6∈M)}

2.3. Stable Models 35

Less formally: to reduce by M , throw away any rule with ¬Bi in its body if Bi

is in M ; then delete all the negative literals from the rules remaining.
The reduct PM of any logic program having rules (2.4) has no negative

literals whatsoever, and so has a least Herbrand model, which we will write in
traditional fashion as Tω

P M (∅), where TP is the ‘immediate consequence operator’
familiar in logic programming. If this least Herbrand model of the reduct is
identical to our original set of atoms M , then M is said to be a stable model of
the logic program P . (Programs may clearly have more than one stable model,
although it is stipulated by the originators of the semantics that “the stable
model semantics is defined for a logic program Π, if Π has exactly one stable
model”.)

2.4 Event Calculus

The event calculus was first introduced by Kowalski and Sergot in [KS86], as
a way of using logic programming to represent and draw inferences about the
effects of events on systems in which they occur. Partly influenced by the
situation calculus of McCarthy and Hayes [MH69], the event calculus is distinct
from the former in its focus on the concept of event. The event calculus is
remarkable not least for its method of answering queries about the value of a
given fluent C at a given time by only considering information which might be
relevant to that fluent’s current value. When implemented as a logic program,
the background of events which perturb the value of C is considered; those
events may have preconditions which are the holding of other fluent atoms,
whose values must be checked according to the same procedure, by looking at
the events which affect their value, and so on. This way of proceeding contrasts
sharply with many other systems for temporal reasoning, where entire models
of a narrative of events must be handled in all their, frequently unmanageable,
complexity.

Many variants of the original axioms now exist, to incorporate treatment for
incompatible fluents, multi-valued fluents, the calculation of periods for which a
given fluent has a given value, and so on. Recent work on the event calculus has
included the application to it of a semantics based on circumscription ([Sha95];
for circumscription see [McC80] or, more thoroughly, [Lif94]); the incorporation
of a treatment for continuous change [Sha90]; and abductive uses of the event
calculus for planning tasks [Sha00].

We will describe a simple, standard, logic-programmed variant of the orig-
inal event calculus. This formulation has been chosen because it shows most
clearly the connections to the logic-programmed form of C+ action descriptions
which we will present in Chapter 3, and indeed, directly inspired these logic
programs. For an overview of other approaches to the event calculus, see the
articles [Sha99], or the books [Mue06a] (on formalisms for common-sense rea-
soning, and reasoning about action and change specifically, but with particular
reference to the event calculus) or [Sha97] (on the event calculus and its relation
to the frame problem).

So, for us, an event calculus program has four components: (i) standard
axioms; (ii) a definition of initiates/3, which describe the effects of actions on
fluent constants; (iii) a definition of initially/1, to establish initial conditions
of the system (what holds at time 0); and (iv) a narrative of events, facts of

36 Chapter 2. Background and Related Work

happens/2. We examine each in turn.
We take the following as our standard axioms, Ax:

holds_at(C=V, T) :-
0 =< T,
initially(C=V),
\+ broken(C=V, 0, T).

holds_at(C=V, T) :-
happens(A=V’, T1),
T1 < T,
initiates(A=V’, C=V, T1),
\+ broken(C=V, T1, T).

broken(C=V, T1, T) :-
happens(A=V’, T2),
T1 =< T2,
T2 < T,
terminates(A=V’, C=V, T2).

terminates(A=V’, C=V, T) :-
initiates(A=V’, C=V1, T),
V1 \= V.

Their purpose is to describe how the current value of a fluent constant depends
on the relevant history of the narrative. The first clause expresses that c=v
is true at t if c had value v initially, and if that value has not been disturbed
in the meantime. The second clause states that c also has value v when an
event occurred which made it take that value, and again, nothing untoward has
happened since, making c take another value. The last two axioms describe
how values of fluent constants are prevented from persisting by default: this
occurs when they are caused to have a value other than their current. It can be
seen that these axioms are not domain-specific, and assume little about the way
in which systems evolve. We rely on negation-by-failure to express the default
persistence of fluents.

An atom
initiates(a=v’, c=v, t)

expresses that an event a=v′ occurring at time t initiates a period of time during
which c has the value v (that period is imagined to start immediately after t, so
that at t itself c may have a different value). In the definition of initiates/3 in
an event calculus program, the T is typically a free variable (expressing a form
of temporal invariance of the laws of event initiation), and the body of clauses
defining this predicate is either empty or a conjunction of holds at/2 atoms,
giving the fluent preconditions of the ‘successful’ (relative to the initiation of
the given fluent c’s value) occurrence of the event a=v′:

initiates(A=V’, C=V, T) :-
holds_at(C1=V1, T),
...
holds_at(Cn, Vn), T).

2.4. Event Calculus 37

We will call a clause having this form an ‘effect axiom’, following common usage.
The final two components of event calculus programs ought to be self-

explanatory: initially(c=v) of course expresses that c has an initial value
of v, and happens(a=v, t) states that event a=v occurs at time t.

Definition 2.15 Let σ be a multi-valued Boolean signature, partitioned into
fluent constants and action constants. A simplified event calculus program P
(with signature σ) is a tuple (Ax, E, Init, N, T), where

• Ax is the set of standard axioms given above;

• E is a set of ‘effects axioms’ of the form given above;

• Init is a set of atoms of the form initially(c=v), for c ∈ σf and v ∈
dom(c);

• N is a set of atoms of the form happens(c=v, t), for c ∈ σa and t such
that 0 6 t < m;

• T is a set of non-negative integers {0, . . . ,m}.

We say that P is causally definite (the qualification avoids confusion with ‘def-
inite’ as applied to clauses) when no c=v occurs in the head of infinitely many
effects axioms. Further, a program P is said to be complete when:

• for all t with 0 6 t < m and a ∈ σa, there is an atom happens(a=v,t) ∈
N ; and

• for all c ∈ σf , there is an atom initially(c=v) ∈ Init.

P is said to be consistent when there is only one such atom happens(a=v,t)
and initially(c=v) in each case. y

Complete and consistent event calculus programs will be the focus of our inter-
est: they provide full specifications of the initial state of a system, and of the
narrative of events and actions performed within that system.

We will hold fixed the interpretation of the atoms t1 < t2 and t1 =< t2,
and only consider Herbrand models M of the language of our event calculus
programs which have (t1 =< t2) ∈ M iff t1 6 t2, and (t1 < t2) ∈ M iff
t1 < t2. We impose similar conditions of appropriateness on the interpretation
of \=. Furthermore, when grounding the clauses of our program, we insist
that the groundings pay attention to the intended meaning of the clauses, so
that the variables T of the clauses in Ax, for instance, are never grounded as
anything other than terms which ‘represent’ integers (0, 1, etc.): the same
goes for variables which we wish to stand for fluent constants, values of action
atoms, and so on. Herbrand models of our event calculus which satisfy all of
these constraints are deemed acceptable.

In general, stable models of our event calculus programs P need represent
only some of the information about a narrative: they are, in general, partial
narratives. If, for example, we fail to specify information in Init which is suffi-
cient uniquely to identify the initial state of our system, then our stable models
will reflect this: for no fluent constant c without an atom initially(c=v) in
Init can there be an atom holds at(c=v,0) in a stable model, regardless of
the way the program’s other details are fleshed out.

38 Chapter 2. Background and Related Work

The acceptable stable models of a complete, consistent (in the senses defined
above) event calculus program will correspond to runs through the transition
system defined by an equivalent C+ action description D.

2.5 Model Checking

The model-checking problem is that of verifying whether the behaviour of a
system conforms to specification. The systems whose behaviour is being verified
are modelled as finite state machines or Kripke structures; most often the user
works with formal languages which define finite state machines, and from which
the finite state machines may be automatically constructed. The properties one
wishes to verify (frequently, liveness and safety constraints) are expressed in
a temporal logic such as a variant of LTL [Pnu81] or CTL [BAPM83, CE81],
and then the model-checker attempts to find a run through the system which
satisfies the negation of the specification. If no such run exists, then the system
satisfies the specification. If a run is found, this is a counterexample to the
specification, and the model-checker outputs the undesired run, demonstrating
that the system fails to work as intended, and also showing how the undesirable
behaviour arises—thus giving indications how the behaviour of the system might
be changed to be in conformity with specification. For an overview of model-
checking consult [CGP99] or [CS01]. We will not give details of model-checking
using BDDs (one of the two methods used most commonly), but will present
a brief overview of bounded model checking, as it is more closely related to our
work in Chapter 5 of this thesis. The overview presupposes some acquaintance
with LTL.

2.5.1 Bounded Model Checking

We here present a brief introduction to bounded model-checking (BMC). The
material in this section is standard.

Model-checkers initially relied on binary decision diagrams for their under-
lying representations, which were eventually succeeded by reduced, ordered,
binary decision diagrams. This technology has, as is well known, been very
effective in greatly expanding the cardinality of the state-space of systems with
which model-checkers can cope, to the point where many industrial manufactur-
ers routinely incorporate model-checking technology into the quality assurance
phase of their production process. In the last decade, however, bounded model
checking (first presented in [BCCZ99]) has been developed as an alternative
approach: a method where runs of increasing length are successively considered
as possible counterexamples to the specifications, and where a propositional
formula true if such a counterexample exists is constructed and passed to an ex-
ternal satisfaction solver. The motivation for this alternative approach has been
the enormous improvements over the recent decade or so in SAT-solving tech-
nologies. There is little correlation between problems which the two different
technologies treat efficiently, and bounded model-checking (BMC) often proves
to be more efficient on systems with small state-spaces. We follow [BCC+03] for
terminology in the succeeding concise presentation of bounded model checking.

Let the Kripke structure representing the behaviour of the system which is
to be checked be M = (S, I, T, L), where

2.5. Model Checking 39

• S is the set of states of the system;

• I ⊆ S is the set of possible initial states—we will let I(s) denote s ∈ I;

• T ⊆ S × S is the transition relation between states; and

• L is an evaluation function, L : S → ℘(A), where A is a set of atomic
propositions.

Clearly, a sequence (s0, . . . , sk) is a path through this structure if and only if it
satisfies the formula

[[M]]k = I(s0) ∧
k−1∧
i=0

T (si, si+1).

Specifications are expressed in LTL; in the following, p ∈ A.

F ::= p | ¬F | F1 ∧ F2 | XF | GF | FF | F1UF2 | F1RF2

Sentences of LTL are evaluated with respect to infinite-length paths through
the Kripke-structure M . Let π = (s0, s1, . . .) be such a path, let π(n) be the nth

state on the path, and let πn be the infinite-length subsequence (sn, sn+1, . . .).
Then:

π |= p iff p ∈ L(π(0))
π |= ¬F iff π 6|= F

π |= F1 ∧ F2 iff π |= F1 and π |= F2

π |= XF iff π1 |= F

π |= GF iff πi |= F, for all i > 0
π |= FF iff πi |= F for some i > 0
π |= F1UF2 iff πi |= F2 for some i > 0

and πj |= F1 for all j with 0 6 j < i

These definitions are all standard.
With bounded model checking we specify a bound k, and consider the initial

fragment (s0, . . . , sk) of infinite-length paths through the Kripke structure which
models our system. A specification g which we want to be true of the system is
negated (let f be the negated specification, f = ¬g), and the substantial part of
the model-checking process is to find a run (s0, . . . , sk) which makes f true. If
such a run is found, then the system fails to conform to the specification g—it
is easy to show that where a run of given length makes a formula f of temporal
logic true, then any run of a longer length must do so too: and so must infinite-
length runs of length ω. On the other hand, if there is no (k + 1)-length run
(s0, . . . , sk) which makes f true, we are faced with two possibilities: either this
is an accurate reflection of the system, in the sense that no run of any length
would invalidate g; or else, we have simply set the bound k too low, and if we
were to raise it, a longer run would be found which made f true and showed
our specification to be unfulfilled. Given the presence of these two possibilities,
bounded model checking proceeds by gradually increasing k, until (i) f is shown
to be true of a sufficiently long run, (and so g, our specification, is false) (ii)

40 Chapter 2. Background and Related Work

the process becomes intractable, or (iii) we reach a value of k which has been
shown, by analytic methods, to be large enough that if f is not found to be
true of any run of a run that length, no longer run will make f true either. As
one might expect, much work is accordingly directed towards finding values of
k which can be proved to be adequately high.

It is important to note that initial sequences (s0, . . . , sk) of infinite-length
runs may, though containing only k + 1 states, represent an infinite path if
there is a loop back from the final state to any other state in the sequence.
Accordingly, the translation of our negated specification f into a propositional
formula will have two disjoined parts, one covering the case where there is such
a loop, and the other for the case where no such loop exists. This disjunction
will be conjoined to [[M]]k and then sent for solution to the SAT-solver.

There is a loop from sk to sl (0 6 l 6 k) when T (sk, sl). Let Lk be shorthand
for the formula

k∨
l=0

T (sk, sl)

known as the loop condition, which represents that there is a loop back from
the final state sk of a (k + 1)-length run to an earlier state. The translation of
the negated specification f to propositional form, for passing to the SAT-solver,
depends on whether the loop condition holds.

First, the case when there is a loop; to start, we need some additional nota-
tion. Where there is a loop from sk to sl, we set:

succ(i) =
{

i + i if i < k,
l otherwise.

All negation symbols ¬ are first moved within subformulas so that their scope
is purely atomic—the negated specification is put into negation normal form.
With a loop, the translation of the LTL formula f is given as l[[f]]0k, where:

l[[p]]ik := t (if p ∈ L(si))

l[[p]]ik := f (if p 6∈ L(si))

l[[¬p]]ik := f (if p ∈ L(si))

l[[¬p]]ik := t (if p 6∈ L(si))

l[[f1 ∨ f2]]ik := l[[f1]]ik ∨ l[[f2]]ik

l[[f1 ∧ f2]]ik := l[[f1]]ik ∧ l[[f2]]ik

l[[Gf]]ik := l[[f]]ik ∧ l[[Gf]]succ(i)k

l[[Ff]]ik := l[[f]]ik ∨ l[[Gf]]succ(i)k

l[[f1Uf2]]ik := l[[g]]ik ∨ (l[[f]]ik ∧ l[[f1Uf2]]
succ(i)
k)

l[[f1Rf2]]ik := l[[g]]ik ∧ (l[[f]]ik ∧ l[[f1Uf2]]
succ(i)
k)

l[[Xf]]ik := l[[f]]succ(i)k

This is the form of the translation for the case of a loop which is given in
[BCC+03], although it has flaws—the translation to propositional form 2[[Gp]]03,
for instance, would be a formula with an infinite number of conjuncts:

p(s0) ∧ p(s1) ∧ p(s2) ∧ p(s3) ∧ p(s2) ∧ p(s3) ∧ · · ·

2.5. Model Checking 41

Any formula f which contains a temporal operator other than X will, when
translated for the case where there is a loop, result in an infinite conjunction.
The details of the remedy for this are not hard to sketch out (they depend
upon recording whether the subformula beginning with a temporal operator
has already been expanded once round the loop), and this remedy is essential
when it comes to encoding the translation scheme in an algorithm. However,
we omit the details here: it should be clear how they would proceed.

Where there is no loop in the run from s0 to sk, the loop formula Lk is false,
and the translation [[f]]ik of our negated specification f must be different. Where
i 6 k:

[[p]]ik := t, (if p ∈ L(si))

[[p]]ik := f , (if p 6∈ L(si))

[[¬p]]ik := f , (if p ∈ L(si))

[[¬p]]ik := t, (if p 6∈ L(si))

[[f1 ∨ f2]]ik := [[f1]]ik ∨ [[f2]]ik
[[f1 ∧ f2]]ik := [[f1]]ik ∧ [[f2]]ik

[[Gf]]ik := [[f]]ik ∧ [[Gf]]i+1
k

[[Ff]]ik := [[f]]ik ∨ [[Ff]]i+1
k

[[f1Uf2]]ik := [[f2]]ik ∨ ([[f1]]ik ∧ [[f1Uf2]]i+1
k)

[[f1Rf2]]ik := [[f2]]ik ∧ ([[f1]]ik ∨ [[f1Rf2]]i+1
k)

[[Xf]]ik := [[f]]i+1
k

The base case occurs with i = k + 1:

[[f]]k+1
k := f .

Thus, we presume that all formulas which reach beyond the end of our (k + 1)-
length path are false, and it is for this reason that bounded model-checking
is incomplete, in the sense described earlier. Where a model of the formula
sent to the SAT-solver is found, this does represent a counterexample to the
specification. However, if no model is found, this may simply indicate that we
have set the bound k too low, and if we were to increase it, a counterexample
to our specification would be discovered.

The different components are yoked together into the formula [[M,f]]k, de-
fined as follows:

[[M]]k ∧
((
¬Lk ∧ [[f]]0k

)
∨

k∨
l=0

(
T (sk, sl) ∧ l[[f]]0k

))
It is this formula which is sent to the propositional SAT-solver. To recap:

• [[M]]k encodes the transition system;

• f is the negation of the specification we wish to prove our system fulfils;

•
(
¬Lk ∧ [[f]]0k

)
covers the case where there is no loop from sk to a state in

the run;

•
∨k

l=0

(
T (sk, sl)∧ l[[f]]0k

)
covers the case where there is a loop back from sk

to somewhere in the run.

42 Chapter 2. Background and Related Work

2.6 Related Work

2.6.1 Action Descriptions and Extended Logic Programs

Section 7.2 of [GLL+04] explores the relationship between Boolean causal the-
ories and extended logic programs. Since, under parameterization by a non-
negative integer m, an action description D of C+ corresponds to a causal
theory ΓD

m (see Section 2.1.4), the work of [GLL+04] shows how to relate C+ to
(extended) logic programs.

Let Γ be a Boolean causal theory, whose rules have the form

l0 ⇐ l1 ∧ · · · ∧ ln, (2.5)

where each li is a literal: thus the causal theories in question may be indefinite
(if this is taken to be the opposite of being definite), though they must not have
⊥ in the head. The extended logic program corresponding to Γ, which we write
as elp(Γ) (Giunchiglia et al. in [GLL+04] give no notation) is defined to be the
set of clauses

l0 ← not l1, . . . ,not ln

for each rule (2.5) in Γ. The following is the main theorem.

Theorem 2.16 Let Γ be a causal theory whose rules have the form (2.5). An
interpretation I is a model of Γ (i.e., in our notation, I |=C Γ) iff I is an answer
set for elp(Γ).

Proof: This is Proposition 11 of [GLL+04]. y

The restriction to interpretations I is important, for in general, answer sets of
extended logic programs need be neither complete nor consistent: that is, they
need not contain a literal p or ¬p for every atom p of the program’s language,
and sometimes they may contain both p and ¬p [GL91]. And if an answer set I
or a program elp(Γ) is either incomplete or inconsistent, then I can clearly not
be a model of Γ.

As a consequence of the surge of interest in answer-set programming in re-
cent years, there are many implementations which find answer sets for extended
logic programs. Accordingly, another implementation route for C+ action de-
scriptions based on logic-programming would be to reduce a set of causal laws
D to the causal theory ΓD

m, then send elp(ΓD
m) to an answer-set solver such as

DLV or SModels. Queries of the standard form possible in CCalc could also
easily be translated. Of course, CCalc itself could be used for the preliminary
stage of translation to ΓD

m: it already performs this manipulation.

2.6.2 Dependence and Acyclicity

The concept of dependence which we will define in Section 3.1 is related to that
of an acyclic action description, as presented in [FL05], which we now describe.
Let D be an action description. Where s is a state of an action description D,
and α is an interpretation of σa which is executable3 in that state, the authors

3The definition of when an action α is executable in a state s is not what one might expect.
Intuitively, α is executable in s when there is at least one s′ such that (s, α, s′) is an edge of the
labelled transition system defined by D; but the authors define an action α to be executable
when there is no law nonexecutable F if G in D such that s ∪ α |= F ∧ G. Even given
that there is no such nonexecutable law, it still may be true that there is no such s′: in the
authors’ terminology, we could have that α is executable in s, but Φ(s, α) empty.

2.6. Related Work 43

define Ts∪α to be the set of all F ⇐ G such that

• there is a static law caused F if G in D; or

• s ∪ α |= G, for some law caused F if G after G in D.

(The authors of [FL05] are working with an earlier version of C+ which does
not contain action dynamic causal laws.) A causal theory Γ is said to be acyclic
relative to C ⊆ σ iff (i) the head of every causal rule in Γ is atomic or the
negation of an atom, and (ii) there exists a mapping κ from C to the non-
negative integers such that κ(c1) < κ(c2) for all c1, c2 ∈ C such that c1 is in
the head, and c2 the body, of a rule in Γ. This definition gets lifted to action
descriptions of C+ in the following way. Let D be an action description. D is
acyclic iff

• the set of all rules F ⇐ G, for static rules caused F if G in D, is acyclic
relative to the statically-determined constants4 of the signature σ of D;
and

• for each state s and action α executable in s, Ts∪α is acyclic with respect
to σ.

The relevance to the work of [FL05] is that where an action description is
acyclic, then given an interpretation of the simple fluent constants σsmpl of the
signature, one may calculate in polynomial time whether this interpretation can
be extended to a state s.

In Section 3.1.1 we will remark on the relations between this concept of
acyclicity and the notion of dependence to be defined in Section 3.1.

2.6.3 The Language E
The language E was first introduced in [KM97b], and like C+ is a high-level
action language for reasoning about the effects of actions on systems over time.
It also has a close relationship to the event calculus, as well as an implementation
as a logic program (see [KMT01]).

The language takes inspiration from two streams of work on reasoning about
time and change within artificial intelligence. On the one hand, it is related to
action languages of the lineage to which C+ belongs: the languageA, an ancestor
of C+, is cited as a direct precursor. From this research, the language E takes
the model of a high-level formal language, with its own syntax and semantics,
which is easily understood and used for reasoning about action and change, and
which may be compiled down into lower-level formalisms for the purposes of
implementation or problem-solving.

Unlike the language A, however, E makes time ontologically primary, and
this differs from approaches to temporal reasoning in the tradition stemming
from the situation calculus [MH69]. With E , time is conceived as an ordered
set of points, where the ordering may be branching or linear, and events are
then associated with different points in the preexistent, and in this way inde-
pendent, structure. As the authors of E indicate, this is more convenient for

4The authors of [FL05] also include the rigid constants of the action description here, but
they are working with an outmoded version of C+, in which rigidity is a matter of the signature
rather than laws.

44 Chapter 2. Background and Related Work

certain types of reasoning about narratives: for example, the insertion of ob-
servations into a narrative is much more easily accomplished if one can simply
assert ‘waving holds-at 4’, and not have to refer to, say, the situation

Result(Wait, Result(Shoot, Result(Wait, Result(Load, S0)))),

as might be necessary in the situation calculus.
We will present a version of the language E which includes state constraints—

they are called r-propositions by the authors [KM97a].
A domain language of E is a 4-tuple (Π,4,∆,Φ), where 4 is a partial or-

dering over the set of time points Π. ∆ are the action constants and Φ, the
fluent constants; literals are constants or their negations. Domain descriptions,
the equivalent of action descriptions in C+, are tuples (γ, η, τ, ρ) containing four
different types of proposition.

• γ is a set of c-propositions, of the form

A initiates F when C (2.6)
or A terminates F when C (2.7)

where F ∈ Φ, A ∈ ∆, and C is a set of fluent literals;

• η is a set of h-propositions

F happens-at T, (2.8)

where A ∈ ∆ and T is a time-point;

• τ is a set of t-propositions, having the form

F holds-at T, (2.9)

with L a fluent literal and T ∈ Π; and

• ρ are the r-propositions, of the form

L whenever C (2.10)

for L a fluent literal and C a set of fluent literals.

The significance of the different kinds of proposition should be obvious to any-
body familiar with the event calculus, from which the terminology has been
borrowed. We do not go further into the details of the semantics here, but refer
the reader to the paper [KM97a], where definitions and examples will be found.

However, we will remark that the treatment of a model is rather different to
that of the causal theories which underlie C+. With C+, one typically supplies a
parameter m which marks the length of run to be considered, and also a number
of causal laws

(c1[t1]=v1)⇐ >, . . . , (cn[tn]=vn)⇐ >,

where each ci[ti], 0 6 i 6 n, must belong to the signature of ΓD
m. These

causal laws constitute the query, and in effect are a partial interpretation I− of
the signature of ΓD

m: the partial interpretation which assigns v1 to c1[t1], and
similarly all the way up to vn and cn[tn]. Finding models of the causal theory ΓD

m

2.6. Related Work 45

accompanying query then means filling out this interpretation to find a member
I = I− ∪ I∗ of I(σm). The important point here is that the component I+ may
introduce new actions into the narrative, so that finding a model of an action
description and query is tantamount to filling in the values of fluent and action
constants both. With E , the process is different. Interpretations are mappings
from Φ×Π to the set of (Boolean) truth-values. Given a domain language and
domain description (where the components η and τ of the domain description
correspond to the query), to find a model is thus to find an interpretation of the
fluent constants which fits: supplying the remaining values for fluent constants
(other than those constrained by the h-propositions), but leaving the set of h-
propositions unchanged. Thus what answers to the finding of a model for ΓD

m

and accompanying query, is not the finding of a model of a domain description
of E , but the process of supplementing the set η to find models of the modified
domain description.

Let (Π,4,∆,Φ) be a domain language, and (γ, η, τ, ρ) a domain description
of E . We will assume that the time-points Π are a set of non-negative integers
{0, . . . ,m}5 and that 4 is the natural ordering 6. This is a substantial restric-
tion on the form of time underlying the narrative structures possible within E ,
but many of the most common domains in AI applications can be represented
by narratives constrained in this way. We will say that any domain description
of E whose domain language falls within this restricted subset is a restricted
domain description. (The restriction makes the relationship between C+ and E
much easier to express.) We also insist that there are no h-propositions of the
form

A happens-at m

in η (m, recall, is the length of the narrative).

Definition 2.17 Let Dr = (γ, η, τ, ρ) be a restricted domain description, with
domain language ({0, . . . ,m},6,∆,Φ) The C+ structure answering to Dr is the
triple (D,m,Q). The component m has already been given.

• D is an action description of C+, with Boolean signature given by σf = Φ,
σa = ∆, and whose causal laws are

inertial c

for all c ∈ σf ;
exogenous a

for all a ∈ σa;
caused F if > after A ∧

∧
C

for all laws of form (2.6) in γ and

caused ¬F if > after A ∧
∧

C

for all laws of form (2.7) in γ; and

caused L if
∧

C

for all r-propositions (2.10) in ρ.
5It would be easy also to cope with the case Π = N, though for the sake of simplicity in

presentation, we do not do that here.

46 Chapter 2. Background and Related Work

• Q is the set

{F [t]⇐ > | there is a law (2.9) or (2.8) in τ or η} y

It should be clear why the choices of full inertia and exogeneity have been made
for fluent and action constants of C+: the semantics of E makes every fluent
constant inertial automatically, and E allows any action to occur at any time.

Now, models of variants of the domain description Dr (variants made by
supplementing the set η, as described above, are in one-to-one correspondence
with appropriate models of the C+ structure answering to Dr.

Theorem 2.18 Let Dr = (γ, η, τ, ρ) be a restricted domain description of E .
Let η∗ be the set of h-propositions A happens-at T (0 6 T 6 m − 1) which
are not members of η. Then for all η+ ⊆ η∗, the function

f : models((γ, η ∪ η+, τ, ρ))

→ models(ΓD
m ∪Q ∪ {A[t]⇐ > | (A happens-at T) ∈ η+})

is bijective, where f(H), for all H ∈ models((γ, η ∪ η+, τ, ρ)), is given by:

f(H)(c[t]) =

 H(c, t), for c ∈ σf and t s.t. 0 6 t 6 m
t, for c ∈ σa, and if (A happens-at T) ∈ η ∪ η+

f, otherwise (for all other c ∈ σa).

Proof: By induction on the length m of narrative. y

As has been noted, in E each fluent constant is inertial, something which
the semantics enforces; this is reflected in the correspondence to C+ action
descriptions, which must contain laws

inertial c

for every member of σf . Now, one clear strength of C+ is that it allows a
much more nuanced treatment of inertia. This is an immediate consequence
of the greater control which C+ allows over all forms of default, inertia being
one instance—that of default persistence over time—of defaults in general. In
C+ one can easily specify that only a proper subset of the fluent constants are
inertial, or that, for a given fluent constant c, only certain values persist by
default. It is also easy to express that fluents are inertial only when certain
other conditions are satisfied, by including laws

caused c=v if c=v after c=v ∧ F

in an action description. This nuanced treatment of inertia is also possible
within EC+, although some interactions must be ruled out (see Section 3.1 for
details). We will also see that EC+ permits a limited use of (static) defaults:
a fluent constant can be declared to have a given value by default, as long as
that constant has no other value by default, nor no other value which persists
by default.

2.6. Related Work 47

2.6.4 Comparative Studies

As has already been said, Chapter 3 of this thesis will explore one way in which
C+ action descriptions can be related to a logic program which is inspired by
the event calculus; a theorem relating the two formalisms forms the backbone
of that chapter, and a later section will go on to examine more closely the
relationship between C+, the logic programs we will present, and one variant of
the event calculus—that given already in Section 2.4.

Thus, one way of looking at that part of the thesis is to see it as a strand
of a much larger work of comparison between different approaches to reasoning
about action and change. In a recent paper [Mue06b], Erik Mueller gives a brief
account of recent comparative work of this sort: between the event calculus,
the action language A [GL93], the language E of which we gave an account in
Section 2.6.3, the situation calculus, and several other approaches. This sort
of comparative work is often done piecemeal: each time a new formalism is
presented, or an extension or variant of an old approach proposed, it is normal
to describe how the new member relates to others in the group. This is how we
have proceeded in the current thesis, defining several of the relationships which
exist between our approach and others in the field. This ought not, however,
to be taken to imply that we do not see the value of a much more systematic
and rigorous approach, one which would try to situate action languages within
a common framework and thus afford the possibility of a more perspicuous
representation of their differences and similarities. (One step in such a direction
was attempted in [BG04].) For now, however, we simply refer to some of the
most relevant comparative work, that treating of formalisms closest to those we
employ.

Miller and Shanahan [MS02] prove equivalence between domain descriptions
of the language E and axioms for a common version of the event calculus, ex-
pressed in classical logic and with a circumscriptive semantics.

Erik Mueller, in the paper [Mue06b] already cited, compares several formal-
izations of the event calculus in classical logic, similar to those presented by
Miller and Shanahan, and again with a semantics using circumscription, to a
family of Temporal Action Logics (TALs; see, for example, [DGKK98]). He
proves that if the two formalisms are restricted to time-structures isomorphic
to N, to fluents over which the law of inertia always holds sway, and if a num-
ber of other restrictions are made, then the event calculus and TALs are not
logically equivalent. He also shows that if a further restriction is made, that of
constraining actions to be what he calls “single-step”, then the two formalisms
can be shown to be logically equivalent.

48 Chapter 2. Background and Related Work

Chapter 3

Efficient Computation of
Narratives

As noted above in Section 2.1.9, the current software for working with C+ be-
comes unusable when working with large domains. The reason is clear: it is
because when answering any query, even of a single atom, CCalc must calcu-
late what holds true at every state and over every transition of the entire run
through the labelled transition system defined by an action description. Yet
the action descriptions we write are frequently inherently modular (something
which [LR06] seeks to exploit). It would therefore be promising, and also highly
desirable, to investigate whether an alternative way of calculating answers to
queries could be found, which depended only on considering information strictly
relevant to the truth or falsity of formulas.

This is what we have done. The Event Calculus, to which we gave a brief
introduction in Section 2.4, is an example of a system for temporal reasoning
which embodies the possibility of precisely the kind of optimized approach we
would like, where laws are written to express when fluents have values, and where
in answering queries only the relevant laws and fluents may be considered. When
answering queries using variants of the Event Calculus similar to that presented
in Section 2.4, one may of course use a ‘bottom-up’ style of computation, which
starts from information about the initial state and gradually works through
the axioms, finding all information about a given narrative. One might also
find stable models of an Event Calculus logic program using a system such as
smodels;1 again, this will produce complete information about fluents at all
times of the narrative. Perhaps it is more usual, however, when working with
the Event Calculus, to query the value of a given fluent at a given time using
a ‘top-down’ approach, which looks towards the aspects of the narrative which
may be relevant to determining the value of that fluent. Our question is whether
we can we use a style of computation similar to that of the ‘top-down’ style of
the Event Calculus to work with C+.

It turns out that the answer is yes, if we make certain restrictions to C+—
fundamentally, to remove non-determinism in our action descriptions. As well
as the theoretical proof of our ideas which forms the meat of this chapter, we
have written an implementation of the ideas in Prolog, a practical proof of

1See http://www.tcs.hut.fi/Software/smodels/

49

50 Chapter 3. Efficient Computation of Narratives

concept with highly encouraging results for quite complex domains.
We first describe the subset of C+ we work with, called EC+. After some

remarks on the notion of dependence, we give an overview of the logic programs
which embody EC+, and how signatures and action descriptions are represented.
There follows a proof that our logic programs are correct with respect to paths
through the transition systems defined by EC+ action descriptions. We describe
the process of checking that the information about initial states and narratives
of actions given to our implementation is consistent, and also give details of the
kinds of query which our implementation provides. An example is given, and
additional details about our logic programs which present the kinds of method
we use for avoiding recomputation in our causal reasoning. A further example
involved the Zoo World, a standard, benchmark domain for reasoning about
action and change. We conclude by relating our logic programs to one variant
of the Event Calculus.

3.1 Restrictions to the Language

The language with which our engine computes is a subset of C+, called EC+; we
now proceed to define that language. The syntax alone is restricted—semantics
are defined identically to those for C+. Our signatures will be the same as
before—that is to say, multi-valued and propositional. We insist that σstat = ∅,
so that there are no statically determined fluent constants. Later versions of
EC+ may remove this limitation.

Action descriptions are again composed of static and dynamic laws, and
must be ‘definite’ in the sense defined in Section 2.1.1. It will be recalled that
static laws take the form

F if G.

We insist that the body G should be a conjunction of fluent atoms or > (which
does not reduce the expressivity of the language, merely marking a canonicity
of form). Furthermore, if the same fluent atom c=v appears both in the head
and the body of a static law, then the body must consist solely in that fluent
atom. In other words, we allow static laws

c=v if c=v

which are usually shortened to default c=v, but we disallow laws

c=v if c1=v1 ∧ · · · ∧ cn=vn

where one of the c1=v1 is identical to c=v and n > 1. Further constraints on
the presence of default laws are treated below.

Fluent dynamic laws have the form

F if G after H.

In line with our treatment of static laws, we insist that the component H be
a conjunction of atoms; again, this latter insistence does not reduce the ex-
pressivity of our language. Given that H is restricted to be a conjunction of
atoms—which may contain either fluent or action constants—it is evident that
we can write our dynamic laws in the form

F if G after H ∧A

3.1. Restrictions to the Language 51

where H is a conjunction of fluent atoms and A is a conjunction of action atoms.
We frequently make use of this opportunity. The component G of our dynamic
laws must always be >, with the exception of the rule’s taking the form (for
some fluent atom c=v)

c=v if c=v after c=v

which is usually abbreviated to inertial c=v.
The only action dynamic laws whose presence we permit in action descrip-

tions of EC+ are those of the form

exogenous a

where a ∈ σa. In fact, we insist that a causal law of that form should occur, for
every action constant a.

Action descriptions of EC+ are sets of the restricted static and dynamic
laws described above, with two additional constraints. The first was alluded to
above, and in fact concerns the relationship between expressions of defaultness
and inertia. Suppose an action description contains a law

default c=v

then that description must contain no law

default c=v′ or inertial c=v′

for v 6= v′.
The second further restriction is more complex. We say that a fluent constant

c depends on another fluent constant c′ in the action description Γ if either

• there is a static law
c=v if G

in Γ where c′ occurs in G, or

• there is some fluent constant c′′ and static law

c=v if G

in Γ, such that c′′ appears in G and c′′ depends on c′

Our second restriction can now be expressed by saying that, except in the case
of laws default c=v, no fluent constant shall depend on itself.

What is the rationale of these seemingly complex and arbitrary restrictions?
Some of the them have been imposed in order to rule out non-determinism in
our action descriptions. In a non-deterministic domain, a complete and con-
sistent specification of the initial state of the system and complete, consistent
information about the narrative of actions may not be sufficient to make the
interpretation of fluent constants unique: and in querying the value of a given
fluent, we wish to be able to receive a definite answer. As an illustration of how
determinism can break down when defaults and statements of inertia interfere
with one another in the ways we have proscribed, consider the Boolean action
description shown in Figure 3.1. When the system is in the state {¬p} shown

52 Chapter 3. Efficient Computation of Narratives

σf = {p}, σa = {a}

inertial p

exogenous a

default p=t

¬pp

a,

¬a

a

¬a

a

¬a

Figure 3.1: Interactions between defaults and inertia

on the right of the diagram, then any action is non-deterministic: it is clear that
this is a consequence of the joint presence of

inertial p and default p=t

in the action description. For when the causal theory ΓD
1 is formed, this will

have the rules

¬p[1]⇐ ¬p[1] ∧ ¬p[0],
p[1]⇐ p[1],

so that (in the presence of the rest of the laws) any transition beginning in the
state {¬p} can have a cause to be true.

The logic programs we have written, and the restrictions which have been
made to C+ in moving to EC+, also mean that we can use SLDNF to answer
queries, rather than attempting to pass the programs to an answer-set solver
in order to find the entire stable model—something which would entirely defeat
our purpose in the current work. This is the reason that self-dependency (apart
from default laws) has been eliminated from action descriptions: for if there were
a dependency loop amongst static laws, our programs would clearly cycle indef-
initely. (It is a felicitous coincidence that the removal of this self-dependency
also makes the proof of Theorem 3.10 much easier.)

In some circumstances, the restrictions we have imposed above on the form
of action descriptions of EC+ may somewhat be relaxed, provided (amongst
other things) that the relaxation does not introduce non-determinism into the
transition system. We do not comment further on the possible relaxation here,
but leave it for further work.

3.1.1 Excursus on Dependence

As it will prove useful later, we now prove some theorems related to the notion
of dependence. This is similar to the notion of an acyclic action description,
defined in [FL05] and recounted by us here in Section 2.6.2. Our definition,
however, is more general: there are action descriptions free from constants which
depend on themselves which are not acyclic.

One reason for introducing this concept of dependence is that action descrip-
tions in which, with the exception of default laws, no fluent constant depends
on itself, and in which there is no interaction between default and inertial
laws of the sort we proscribed in Section 3.1, are deterministic: if

s[0] ∪ e[0] ∪ s1[1] |=C ΓD
1 and s[0] ∪ e[0] ∪ s2[1] |=C ΓD

1

3.1. Restrictions to the Language 53

for some action description D which conforms to our specification, then s1 = s2.
This means that if we specify an initial state s0 of a run, and also a series
e0, e1, . . . , et−1 of interpretations of σa, then this information can be filled out
to at most one interpretation of σt which is a (causal-theoretic) model of ΓD

t ;
and this means that if we can show a model of this causal theory does exist,
then a query of some particular value of a fluent at a given time must have a
definite answer—and cannot depend on which of two possible, non-deterministic
courses the system takes.

The proof of Theorem 3.10, the main result of this Chapter, also relies on
the series of sets we shall introduce in this section, with the aid of the concept
of dependence.

Thus, let D be an action description of EC+, and let L ⊆ D be a subset of
its static laws which contains no default laws, of the form c=v if c=v. Define

CL = {c′ | ∃(c=v if c1=v1 ∧ · · · ∧ cn=vn ∈ L)∧
(c′ = c ∨ c′ = c1 ∨ · · · ∨ c′ = cn)}

so that CL in fact is the set of all fluent constants mentioned in the static laws
of L. Now, we will define a sequence E0, . . . , Ej of subsets of CL, such that
the members of Ei do not depend on any Ek for k 6 i. This sequence will be
valuable later, when we prove the correctness of our logic programs for EC+.
In order to define the sequence E0, . . . , Ej , we make use of an operator D on
subsets of constants in CL.

So first, for a set L of causal laws as before and any S ⊆ CL, we define

D(S) =
⋃
c∈S

{c′ | ∃(c=v if c1=v1 ∧ · · · ∧ cn=vn) ∈ L and (c′ = c1 ∨ · · · ∨ c′ = cn)}

It is obvious that D(S) is the set of constants that members of S depend on,
relative to the background set of laws L.

Theorem 3.1 Let D0(S) = S, and Dk+1(S) = D(Dk(S)). We have

Dk+1(S) =
⋃

c∈Dk(S)

D({c})

Proof: It is obvious from the definition of D(S) that we have

D(S) =
⋃
c∈S

D({c}).

So, substituting Dk(S) for S here, we get our result. y

Theorem 3.2 We have:

D({c1, . . . , cn}) = D({c1}) ∪ · · · ∪D({cn}).

Proof: Immediate from the definition of D(S). y

54 Chapter 3. Efficient Computation of Narratives

Theorem 3.3 The following holds.

Dk(S) =
⋃
c∈S

Dk({c})

Proof: The proof is by induction on k.
Base (k=0): This is simply S =

⋃
c∈S

{c}.

Induction: Assume the result holds for k = j, so that we have

Dj(S) =
⋃
c∈S

Dj({c}).

Now we must show the result for k = j +1. So, as our sets S are finite (because
action descriptions of EC+ must be definite), we let S = {c1, . . . , cn}, and so:

Dj+1(S) = D(Dj(S))

= D(
⋃
c∈S

Dj({c})) (induct. hyp.)

= D(Dj({c1}) ∪ · · · ∪Dj({cn}))

Now, letting Dj({ci}) = {c1
i , . . . , c

mi
i } (as these sets must be finite too), we

continue:

Dj+1(S) = D({c1
1, . . . , c

m1
1 , c1

2, . . . , c
1
n, . . . , cmn

n })
= D({c1

1}) ∪ · · · ∪D({cm1
1 }) ∪ · · · ∪D({cmn

n })
(by Theorem 3.2)

=
⋃

c∈Dj({c1})

D({c}) ∪ · · · ∪
⋃

c∈Dj({cn})

D({c})

=
⋃
c∈S

⋃
c′∈Dj({c})

D({c′})

=
⋃
c∈S

Dj+1({c}) (by Theorem 3.1)

Thus, on the assumption that the result is true for k = j, it is shown for k = j+1.
Therefore, by induction, we have our result. y

Now, consider as before an action description D of EC+, and let L ⊆ D be
a subset of the static laws of D with no default conditions in.

Observation 3.4 Let S ⊆ CL. The set of constants on which constants in S
depend and which are in CL is given by

∞⋃
i=1

Di(S)
y

Theorem 3.5 For all c ∈ CL, there is k > 0 such that Dk({c}) = ∅.

3.1. Restrictions to the Language 55

Proof: Suppose, for contradiction, there is some c ∈ CL with all k > 0 such
that Dk({c}) 6= ∅. We note that for all S ⊆ CL, we have D(S) ⊆ CL (by
the definitions of D(S) and CL), and let |CL| = k′. There must then be p, q,
with 0 6 p, q 6 k′ and p 6= q, with for some c′ ∈ CL, both c′ ∈ Dp({c})
and c′ ∈ Dq({c}). Yet then c′ depends on itself (by the previous observation),
contradicting the definition of action descriptions of EC+. Thus we have our
result. y

Theorem 3.6 Let S ⊆ CL. Then there is k > 0 such that Dk(S) = ∅.

Proof: This follows from the previous result, Theorem 3.3, and the necessary
finiteness of S. y

Given the previous corollary, it is clear that, for D, L and CL as before, there
must be for some j with 0 6 j, a sequence of sets CL, D1(CL), . . . , Dj(CL), such
that Dj(CL) = ∅. We use the sequence to define another, E0, . . . , Ej−1, so that

E0 = Dj−1(CL),

E1 = Dj−2(CL)−Dj−1(CL),
...

Ej−1 = CL − (D(CL) ∪ · · · ∪Dj−1(CL))

It is clear that the union of the Ei is equal to CL, and that by the definition of
E0, its members depend on no constant in CL. Further, the sets in the sequence
Ei must be pairwise disjoint.

Theorem 3.7 Let k be such that 0 6 k 6 j − 1. Then, the members of Ek

depend on no constant in
j−1⋃
i=k

Ei

Proof: Assume for contradiction that there is some member c of Ek such that
c depends on a constant c′ which is a member of the union of Ei given. Then
for some k′, with k 6 k′ 6 j − 1, we have c′ ∈ Ek′ . But by the definition of the
Ei, we have that

c ∈ Dj−1−k(CL)−
j−1⋃

i=j−k

Di(CL) and c′ ∈ Dj−1−k′
(CL)−

j−1⋃
i=j−k′

Di(CL)

so that clearly, c ∈ Dj−1−k(CL) and c′ ∈ Dj−1−k′
(CL). As k 6 k′, then by

Observation 3.4, c′ must depend on c. But then as each depends on the other,
then each depends on itself, which is a contradiction of the nature of D (and
thus of L). y

In Section 2.6.2 we described the concept of an acyclic action description
as it features in [FL05]. This is clearly related to the absence of dependence in
action descriptions. If an action description D of C+ is acyclic, then no constant
c of the signature of D can depend on itself. For if c did depend on itself, there
would be a series of static laws

caused c1=v1 if G1, . . . , caused cn=vn if Gn

56 Chapter 3. Efficient Computation of Narratives

where c1 = c, and such that for all i with 1 < i 6 n, ci occurs in Gi−1, and c1

occurs in Gn. And in that case, there could be no mapping κ as required by
the definition of acyclicity (see Section 2.6.2).

In general, the converse direction does not hold: an action description D
which is free from constants which depend on themselves need not be acyclic.
This is because, in defining the concept of dependence, we made use of the fact
that action descriptions of EC+ satisfy various other constraints, including a
restriction on the components G of fluent dynamic laws

caused F if G after H.

We do, however, have a restricted converse: that all action descriptions of EC+
in which no constant depends on itself (i.e. in which there are no default laws)
are acyclic.

This concludes the interlude on dependence.

3.1.2 Action Domains

Most action descriptions presented as examples in [GLL+04] are familiar prob-
lem cases for knowledge representation. It is clear that many of these action
descriptions of C+ are also descriptions of EC+: the ‘Monkey and Bananas’
domain, the ‘Shooting Turkeys’ domain, the ‘Lifting Table Ends’ domain, and
the ‘Publishing Papers’ domain. As noted, we have removed the possibility of
non-determinism in our action descriptions by placing constraints on the simul-
taneous presence of certain sorts of causal laws which have a default component,
and of course this does mean that some domains which are common in artifi-
cial intelligence cannot be successfully treated by the logic programs we will
introduce.

3.2 Logic Programs

We now show how action descriptions of EC+ are to be represented as logic
programs, in a way inspired by the event calculus. The following, as one might
expect, is a greatly simplified version of the actual Prolog code of our pro-
grams: the essence only has been retained, in a way which abstracts away
from methods of avoiding recomputation (see Section 3.7), from components
which enable the plotting of causal histories through a ‘trace’ facility (see Sec-
tion 3.5.1), and from predicates which print the answers to queries and effect a
partial evaluation of the logic programs.

3.2.1 Signatures

Suppose we have an action description D, having signature σ, For all c ∈ σ
(where this c is either a fluent constant or an action constant), and for all
v ∈ dom(c), we have a fact

domain(c, v).

so that the series of domain/2 facts show the signature of the action description.
The Boolean truth values are represented as Prolog atoms ff and tt. Further,
for all c ∈ σf we have a fact

3.2. Logic Programs 57

flu_constant(c).

and for all c ∈ σa we have a fact

act_constant(c).

3.2.2 Laws

Static laws either have ⊥ as their head, or a fluent atom. In the former case,
the law

⊥ if c1=v1 ∧ · · · ∧ cn=vn

is represented as a clause

never([c1=v1,...,cn=vn]).

In the latter case, a static law is an expression

c=v if c1=v1 ∧ · · · ∧ cn=vn.

When such laws are not default conditions c=v if c=v, then we express them
as clauses

causes(c=v, [c1=v1,...,vn=vn]).

If they are defaults, then they are denoted by facts

default(c=v).

Fluent dynamic laws, just like static laws, may either have ⊥ as their head
or a fluent atom. In the former case they will have the form

⊥ if > after (c1=v1 ∧ · · · ∧ cm=vm) ∧ (a1=v′1 ∧ · · · ∧ an=v′n)

which we represent (paying attention to the abbreviations given in Section 2.1.6)
as

nonexecutable([a1=v1’,...,an=vn’], [c1=v1,...,cm=vm]).

In the latter case, they may be of two kinds. In the first, they have the form

c=v if > after (c1=v1 ∧ · · · ∧ cm=vm) ∧ (a1=v′1 ∧ · · · ∧ an=v′n)

and will be expressed by facts

causes(c=v, [a1=v1’,...,an=vn’], [c1=v1,...,cm=vm]).

The second kind is that of statements of inertia; a law

c=v if c=v after c=v (3.1)

is to be represented by a logic-programmed fact

inertial(c=v).

(This is different from C+, in which a fluent constant is declared as inertial, and
this statement stands for the set of laws (3.1) for all values v ∈ dom(c).)

It is clear from the preceding remarks that an action description D of
EC+ will uniquely determine definitions for predicates never/1, causes/2,
default/1, nonexecutable/2, causes/3 and inertial/1. The set of such
definitions for the description D will be called Laws(D).

58 Chapter 3. Efficient Computation of Narratives

3.2.3 Initial States and Actions

One frequent way of reasoning with action descriptions of C+ is the following.
One starts with an action description, which as has been shown determines a
transition system—the nodes of the system representing states of the domain be-
ing modelled, and the edges representing actions performed within the domain,
which change the properties of states. To this action description or transition
system, one adds further information describing the known properties of an
initial state of the system in question, together with details of the actions per-
formed at later times. One then proceeds to ask questions about what may be
inferred about later states than the initial, given what is known to hold in the
initial state and what is known to have happened at the times intervening.

Given the correspondence between action descriptions (and times t) and
causal theories, it is clear how one might set about answering such queries. Let
D be an action description with signature σ = σf ∪ σa, and suppose one is
interested in properties of states at times up to t. Information about an initial
state can be represented by a set Init of atoms of the form c[0]=v, with c ∈ σf

and v ∈ dom(c). Information about actions occurring later can be represented
by sets of atoms Haps0, ...,Hapst−1, where the atoms in Hapsi each have the
form a[i]=v, for a ∈ σa and v ∈ dom(a). For the purposes of our query, we can
consider the models of the causal theory

ΓD
t ∪ {F ⇐ > | F ∈ Init ∪Haps0 ∪ · · · ∪Hapst−1}

(Given that there are no statically-determined fluent constants in the action
descriptions of EC+, the models of this causal theory are the same as those of
ΓD

t which make the atoms of Init and the Hapsi true.) We may wish to ask, for
example, whether some fluent atom c[i]=v, for 0 6 i 6 t, is true in all models
of this theory, or to find out whether there is more than one model.

With our logic programs, the case is much the same. If we want to impose
that in the initial state a fluent c is constrained to have value v, then we represent
that by a fact

init(c=v).

Information about actions is represented similarly: if at time i we wish to state
that action constant a has value v, then we include a fact

happens(c=v, i).

in our logic programs. We insist that complete and consistent information be
provided about the initial state—that is to say, for all fluent constants c ∈
σf , there should be exactly one v ∈ dom(c) such that c[0]=v is a member of
Init. Further, complete and consistent information should be given about the
performance of actions (in other words, the truth of atoms a=v for a ∈ σa) up
to the maximum time in which we are interested. Thus, for all i (0 6 i < t),
and for every a ∈ σa, there should be exactly one v ∈ dom(a) such that,
a[i]=v ∈ Hapsi. It may seem that this places a large burden on the user,
in that where the signature of the action description has a large number of
fluent and action constants, or else where the length of narrative t is large, very
many atoms will need to be specified in order to make the sets Init and the
Hapsi complete. This problem does not arise: in our implementation we have

3.2. Logic Programs 59

included features which enable a very concise representation of initial states and
narratives of actions, which we describe in more detail in Section 3.5.

In addition, since we are supposing the presence of a non-negative integer t,
which is the maximum length of histories under consideration, we include a fact

max_time(t).

3.2.4 Axioms

The most important predicate definitions in our logic programs are inspired by
the axioms of that brand of the event calculus described in Section 2.4, and
are now presented. Again, recall that the axioms presented here are given in
a simplified form which retains the essence of the algorithm whilst abstracting
away from bookkeeping, time-saving, and other devices—some of which will be
described later.

% --------------- caused/2 ---------------

caused(C=V, 0) :-
init(C=V).

caused(C=V, T1) :-
0 < T1,
max_time(MaxT),
T1 =< MaxT,
causes(C=V, A, H),
T is T1 - 1,
all_happen(A, T),
all_caused(H, T).

caused(C=V, T) :-
max_time(MaxT),
T =< MaxT,
causes(C=V, F),
all_caused(F, T).

caused(C=V, T1) :-
0 < T1,
max_time(MaxT),
T1 =< MaxT,
inertial(C=V),
T is T1 - 1,
caused(C=V, T),
\+ clipped(C=V, T, T1).

caused(C=V, T) :-
0 < T,
max_time(MaxT),
T1 =< MaxT,
default(C=V),

60 Chapter 3. Efficient Computation of Narratives

\+ overridden(C=V, T).

% --------------- all_happen/2 ---------------

all_happen([], _).

all_happen([C=V|Rest], T) :-
happens(C=V, T),
all_happen(Rest, T).

% --------------- all_caused/2 ---------------

all_caused([], _).

all_caused([C=V|Rest], T) :-
caused(C=V, T),
all_caused(Rest, T).

% --------------- clipped/3 ---------------

clipped(C=V, T1, T2) :-
max_time(MaxT),
T2 =< MaxT,
0 =< T1,
domain(C, V1),
V1 \= V,
(

causes(C=V1, A, H),
all_happen(A, T1),
all_caused(H, T1)
;
causes(C=V1, F),
all_caused(F, T2)

).

% --------------- overridden/2 ---------------

overridden(C=V, T) :-
domain(C, V1),
V1 \= V,
caused(C=V1, T).

The two definitions for all happen/2 and all caused/2 should be straightfor-
ward. We here give brief commentary on the predicates caused/2, clipped/3
and overridden/2.

The first clause of the definition for caused/2 expresses our idea that any-
thing which we specify to be true in the initial state is caused to hold. The
second clause refers to dynamic laws, which—it will be remembered—are stored

3.2. Logic Programs 61

as facts causes(c=v, A, H) in our logic-programmed version of action descrip-
tions. The clause for dynamic laws is informed by the fact that if we have a
causal theory ΓD

t containing the laws

c[i + 1]=v ⇐ H[i] ∧A[i]

for 0 6 i < t, and where H is a conjunction of fluent atoms and A is a con-
junction of action atoms, then if some interpretation X of the signature of ΓD

t

is such that X |= H[i] ∧ A[i], then the reduct (ΓD
t)X must contain c[i + 1]=v.

The third clause of the definition of caused/2 relates in a similar way to static
laws of the action description D.

The fourth clause in the definition of caused/2 concerns the circumstances
under which the truth of a fluent c=v carries through inertially from the previous
state; from the definition of clipped/3, it is clear that this happens when the
fluent has been declared to be inertial, and when the constant c is not caused to
have some other value, either through a dynamic law ‘activated’ by the transition
between states, or through a static law activated by properties of the successor
state. Finally, the fifth clause ensures that a constant c is caused to have its
default value v if the constant has been caused to have none of its other values
(in other words, if the default value has not been overridden) much as one might
expect.

The definitions of the five predicates given here are collected together in the
set Axioms.

3.2.5 The Components Together

We now collect the clauses of the previous subsections together to form a logic
program.

Definition 3.8 Let D be an action description of EC+ and t a non-negative
integer. Let also Init be a set of atoms of the form c[0]=v, and Hapsi, for
0 6 i < t be sets of atoms of the form c[i]=v, as previously described. Then we
define

LP (D, t, Init, {Hapsi | 0 6 i < t})
as the union of the sets:

• {domain(c, v) | c ∈ σ and v ∈ dom(c)}

• {flu constant(c) | c ∈ σf}

• {act constant(c) | c ∈ σa}

• Laws(Γ)

• {init(c=v) | c[0]=v ∈ Init},

• {happens(a=v,i) | a[i]=v ∈ Hapsi}, for all 0 6 i < t,

• {max time(t)}.

• Axioms y

With this crucial definition behind us, we can proceed to investigate the
relations between models of causal theories and stable models of our logic pro-
grams.

62 Chapter 3. Efficient Computation of Narratives

3.3 Proof

We will use the stable model semantics [GL88], of which we gave an account in
Section 2.3 to give the meaning of our logic programs. Though this semantics
has a notion of ‘reduct’ which is close in spirit and notation to that for causal
theories, we trust that there will be no confusion between the two in the ensuing
proof and discussion.

Observation 3.9 Let D be an action description of EC+, let t be a non-
negative integer, and Init and Haps0, . . . ,Hapst−1 be sets as previously de-
scribed. Then

domain/2 flu_constant/1 act_constant/1
never/1 causes/2 default/1
nonexecutable/2 causes/3 inertial/1
init/1 happens/2 max_time/1
caused/2 all_happen/2 all_caused/2
clipped/3 overridden/2

are the predicates defined in LP (D, t, Init, {Hapsi | 0 6 i < t}). y

Theorem 3.10 Let D be an action description of EC+, with signature σ, and
suppose that X ∈ I(σt). Then, where Init and the Hapsi are as previously given,
X |=C ΓD

t ∪{F ⇐ > | F ∈ Init∪Haps0 ∪ · · · ∪Ht−1} iff there is a stable model
M of P = LP (D, t, Init, {Hapsi | 0 6 i < t}) such that

(i) ∀c, v, i(X |= c[i]=v iff caused(c=v,i) ∈M) (c ∈ σf)
(ii) ∀a, v, i(X |= a[i]=v iff happens(a=v,i) ∈M) (a ∈ σa)

(iii) ∀L(never(L) ∈ P

→ ∀i(all caused(L,i) 6∈M))
(iv) ∀L1, L2(nonexecutable(L1,L2) ∈ P

→ ∀i(all caused(L2,i) ∈M → all happen(L1) 6∈M))

Proof: (→):
Assume some interpretation X of the signature of ΓD

t , which is a model of the
causal theory ΓD

t ∪ {F ⇐ > | F ∈ Init ∪ Haps0 ∪ · · · ∪ Ht−1}, and let (ΓD
t)∗

abbreviate the name of that causal theory. We will describe a Herbrand model
M of P = LP (D, t, Init, {Hapsi | 0 6 i < t}) which is a stable model of P
and which satisfies the four conditions enumerated. Letting HU stand for the
Herbrand Universe, we include in M :

• all facts of the following predicates in P : domain/2, flu constant/1,
act constant/1, never/1, causes/2, default/1, nonexecutable/2,
causes/3, inertial/1, max time/1

• {init(c=v) | X |= c[0]=v and c ∈ σf},

• {happens(a=v,i) | X |= a[i]=v and a ∈ σa},

• {caused(c=v,0) | X |= c[i]=v and c ∈ σf},

3.3. Proof 63

• {all happen([],t) | t ∈ HU},

• {all caused([],t) | t ∈ HU},

• {all happen(L,i) | L is a list of pairs a=v, with X |= a[i]=v and
a ∈ σa},

• {all caused(L,i) | L is a list of pairs c=v, with X |= c[i]=v and
c ∈ σf},

• {clipped(c=v,t1,t2) | ∃(c=v′ if > after H ∧A) ∈ D such that
X |= (H ∧A)[t1] and v′ 6= v},

• {clipped(c=v,t1,t2) | ∃(c=v′ if F ∈ D such that F 6= c=v and
X |= F [t2] and v′ 6= v},

• {overridden(c=v,i) | X |= c[i]=v′ and c ∈ σf and v′ 6= v}.

We must first show that this M is indeed a stable model of P—in other words,
that it is the least Herbrand model of PM . The first step is to show that it is a
model of PM .
So, assume for contradiction that M is not a model of PM . Then there must
be some (definite) clause whose head is false according to the interpretation M ,
but whose body is true. Clearly such a clause cannot have as its head any of
the predicates

domain/2 flu_constant/1 act_constant/1
never/1 causes/2 default/1
nonexecutable/2 causes/3 inertial/1
max_time/1

for all facts from P of these predicates were included in M by definition, and
there are only facts in the definitions of these predicates. We are left with a
case analysis.
init/1: In this case, we must have some init(c=v) ∈ P . That can only come
about if c[0]=v ∈ Init. Since X |=C (ΓD

t)∗ by hypothesis, clearly X |= F for
all F ∈ Init, so that X |= c[0]=v. Thus by the definition of M , we have that
init(c=v) ∈M , a contradiction.
happens/2: We must have some happens(a=v,i) ∈ P . Then clearly a[i]=v ∈
Hapsi, and so similarly to the previous case, we have X |= a[i]=v. Thus
happens(a=v,i) ∈M , which yields the contradiction we want.
caused/3 (axiom 1): In this case, we must have that init(c=v) ∈ M , and so
X |= c[0]=v. But then by definition, caused(c=v,0) ∈M , a contradiction.
caused/3 (axiom 2): Here, there would have to be an integer i (0 6 i < t),
together with a dynamic rule c=v if > after H ∧ A in D, with H as some
conjunction c1=v1 ∧ · · · ∧ cn=vn, A as a conjunction a1=v′1 ∧ · · · ∧am=v′m, such
that caused(cj=vj,i) ∈ M for all 1 6 j 6 n, and happens(aj=vj’,i) ∈ M ,
for all 1 6 j 6 m. But in that case, the definition of M evidently requires
that X |= (H ∧ A)[i], so that c[i]=v ∈ ((ΓD

t)∗)X and thus X |= c[i]=v. So
caused(c=v,i) ∈M , a contradiction.
caused/3 (axiom 3): This case is straightforward, given the model of reasoning
exercised above.

64 Chapter 3. Efficient Computation of Narratives

caused/3 (axiom 4): Here, we evidently have, for some i with (0 6 i < t),
caused(c=v,i) ∈ M . Also, we must have (letting i′ notate the successor to i)
clipped(c=v,i,i’) 6∈M . From the latter follows that there is no dynamic law
c=v′ if > after G in D (v ∈ dom(c), v′ 6= v) such that X |= G[i], and also that
there is no static law c=v′ if F (v ∈ dom(c), v′ 6= v) in D such that X |= F [i]. As
inertial c=v is in D, there can be no rules expressing default behaviour of the
fluent c, and so the only causal laws of (ΓD

t)∗ whose heads contain the constant
c—and whose bodies have not been discounted as false—have to be the correlates
of the laws of inertia, in other words the laws c[i′]=v′ ⇐ c[i′]=v′∧ c[i]=v′ for all
v′ ∈ dom(c). But since X |=C (ΓD

t)∗ and X |= c[i]=v (as caused(c=v,i) ∈M),
the only one of the causal laws whose head contains c and has time-stamp i′,
and whose body may be true, is c[i′]=v ⇐ c[i′]=v ∧ c[i]=v. As X is a model for
(ΓD

t)∗, we know that there must be at least one rule whose head has time-stamp
i′ and contains the constant c, and whose body is true in X. Thus it must be
the rule we have narrowed ourselves down to, and so also X |= c[i′]=v. But
then caused(c=v,i’) ∈M , which is a contradiction.
caused/3 (axiom 5): We must have, for i such that 0 6 i 6 t, no v′ ∈ dom(c)
such that v′ 6= v and X |= c[i]=v—because overridden(c=v,i) 6∈ M . But
then since X |=C (ΓD

t)∗, it must be the case that there is some v′ ∈ dom(c) such
that X |= c[i]=v′. This v′ can only be v, so that X |= c[i]=v and thus by the
definition of M , caused(c=v,i) ∈M , which is the contradiction we want.
all happen/2: Clearly, since we have included all facts all happen([], t),
for t ∈ HU , then for us to have a body which is true and a head which is false,
then there must be a, v, i, such that happens(a=v,i) ∈M , and some list Rest
such that all happen(Rest, i) ∈M . But then, clearly Rest must be a list of
pairs a’=v’ such that happens(a’=v’,i) ∈M . But then clearly [a=v|Rest] is
such a list, and thus by definition, the head all happen([a=v|Rest], i) ∈M ,
which is the contradiction we want.
all caused/2: The contradiction here is derived in the same way we did it for
all happen/2.
clipped/3: Suppose the body of the clause is true; clearly, this can happen
in one of two ways. In the first case, we have three atoms causes(c=v1,a,h),
all happen(a,t1), all caused(h,t1) in M , for some t1 such that 0 6 t1 < t.
But then by the definition of M , we must have some law c=v′ if > after H ∧A
(where H is a conjunction of the atoms represented in h, and likewise for A and
a), such that X |= (H ∧ A)[t1]. But then clearly clipped(c=v,t1,t2) ∈ M ,
by the definition of M . In the second way the body of a clause for clipped/3
can be true, we must have some causes(c=v1,f) and all caused(f,t2) in M .
Now by the definition of M it is clear there must be c=v1 if F in D, such that
X |= F [t2]. But then by definition, clipped(c=v,t1,t2) ∈M , so that we have
(according to both cases) our desired contradiction.
overridden/2: Suppose the body of the clause is true. Then there is some
atom caused(c,v1,t) ∈ M , with v1 6= v. By the definition of M , we must
then have that X |= c[t]=v1, and thus again clearly overridden(c,v,t) ∈ M
by definition, which is a contradiction.

Thus it is clear that M is a model of PM . We now have to show that it is
the least (Herbrand) model. Letting TP denote the ‘immediate consequence’
operator of Kowalski and Van Emden [vEK76], we see that the result we need
is that M ⊆ Tω

P M (∅). Since we know which predicates M contains—for we have

3.3. Proof 65

specified them—we show the required set-theoretic inclusion using a case-based
analysis. First note that the only facts of the predicates

domain/2 flu_constant/1 act_constant/1
never/1 causes/2 default/1
nonexecutable/2 causes/3 inertial/1
max_time/1

included in M are also facts in P—and so must necessarily be in PM and
Tω

P M (∅).
init/1: Let init(c=v) ∈ M . Then clearly, by the definition of M , we have
X |= c[0]=v. But as Init completely specifies the initial state (ie., for every
c′ ∈ σf there is exactly one v′ ∈ dom(c′) such that c′=v′ ⇐ > ∈ Init), and as
X |=C (ΓD

t)∗, we must have that c[0]=v ∈ Init, and thus by the definition of P ,
clearly init(c=v) ∈ P , and so too init(c=v) ∈ Tω

P M (∅), as desired.
happens/2: Let happens(a=v,i) ∈ M . Then by definition, X |= a[i]=v. As
for all a′ ∈ σa, there is v′ ∈ dom(a′) such that a′[i]=v′ ∈ Hapsi, and as
X |=C (ΓD

t)∗, we must have that a[i]=v ∈ Hapsi, so that by the definition of
P , happens(a=v,i) ∈ P , and so too happens(a=v,i) ∈ Tω

P M (∅), as desired.
caused/2: We show the result for atoms caused(c=v,i) by induction on i.
So, first consider the case for i = 0, and let caused(c=v,0) ∈M . Then clearly,
X |= [0]c=v, so that by the same reasoning for the case of init(c=v), we have
that init(c=v) ∈ PM . But then it is clear that init(c=v) ∈ TP M (∅), so that
given the first clause defining the predicate caused/2, we have caused(c=v,0) ∈
T 2

P M (∅), and thus also caused(c=v,0) ∈ Tω
P M (∅)—which is what we want.

Now assume the result for i 6 k, and let caused(c=v,k+1) ∈ M . Then X |=
c[k + 1]=v, and we know that X is the unique model of ((ΓD

t)∗)X (for that is
what defines X |=C (ΓD

t)∗). Thus there is some law c[k + 1]=v ⇐ F ∈ (ΓD
t)∗,

with X |= F , and no rule c[k + 1]=v′ ⇐ G ∈ (ΓD
t)∗ for v′ 6= v and such that

X |= G. The law c[k + 1]=v ⇐ F can clearly take one of four forms:

(i) c[k + 1]=v ⇐ (c1=v1 ∧ · · · ∧ cm=vm)[k] ∧ (a1=v′1 ∧ · · · ∧ an=v′n)[k]

(ii) c[k + 1]=v ⇐ c[k + 1]=v ∧ c[k]=v

(iii) c[k + 1]=v ⇐ c[k + 1]=v

(iv) c[k + 1]=v ⇐ (c1=v1 ∧ · · · ∧ cn=vn)[k + 1]

Now, suppose we have a law of the form (i). We have that

X |= (c1=v1 ∧ · · · ∧ cm=vm)[k] and X |= (a1=v′1 ∧ · · · ∧ an=v′n)[k]

so letting

A = {caused(c1=v1,k),...,caused(cm=vm,k),
happens(a1=v1’,k),...,happens(an=vn’,k)}

we have that by the definition of M , A ⊆ M . Now, by the inductive hypoth-
esis A ⊆ Tω

P M (∅), so that clearly, the atoms all caused([c1=v1,...,cm=vm],
k) and all happen([a1=v1’,...,an=vn’], k) are also in Tω

P M (∅). But that
means caused(c=v,k+1) ∈ Tω

P M (∅) as desired.
Now, suppose there is a law of form (ii), and as stated, no law

c[k + 1]=v′ ⇐ G

66 Chapter 3. Efficient Computation of Narratives

in (ΓD
t)∗ such that X |= G. We first show that clipped(c=v,k,k+1) 6∈ M .

Suppose for contradiction that clipped(c=v,k,k+1) is a member of M . But
then it is clear from the definition of M that the presence of this clipped/3
atom would contravene the stipulation about laws c[k+1]=v′ ⇐ G given above.
So clipped(c=v,k,k+1) 6∈ M . Now, X |= c[i]=v and so caused(c=v,k) ∈ M ,
and thus by the induction hypothesis, caused(c=v,k) ∈ Tω

P M (∅). We know that
inertial(c=v) ∈ Tω

P M (∅), and so by the fact that clipped(c=v,k,k+1) 6∈ M ,
the definition of the stable model semantics, and the nature of PM , we have
that caused(c=v,k+1) is in Tω

P M (∅) as desired.
Next, suppose we have a law of form (iii), with, as we know, X |= c[k + 1]=v.
We also know that there is no v′ 6= v such that there is a law

c[k + 1]=v′ ⇐ G

such that X |= G. As X is an interpretation, we have for all v′ 6= v, that
X 6|= c[k + 1]=v′, so that by the definition of M , we get for all v′ 6= v, that
caused(c=v’,k+1) is not in M . However, as Tω

P M (∅) ⊆M , then for all v′ 6= v,
we have caused(c=v’,k+1) 6∈ Tω

P M (∅). As we clearly have default(c=v) ∈
Tω

P M (∅), then by the fifth axiom for caused/2, we have caused(c=v,k+1) ∈
Tω

P M (∅), as we wish.
The next stage is a little more complex, and itself requires an inductive proof
(within the main one). First define Sall = {c[k + 1]=v | X |= c[k + 1]=v}, and
also

S′ = {c[k + 1]=v | X |= c[k + 1]=v ∧ c ∈ σf∧
(∃ a rule (i) in (ΓD

t)∗ with body F and X |= F ∨
∃ a rule (ii) in (ΓD

t)∗ with body F and X |= F ∨
∃ a rule (iii) in (ΓD

t)∗ with body F and X |= F)}

We have already shown that S′ ⊆ Tω
P M (∅), and so it remains to show that

S = Sall − S′ is such that S ⊆ Tω
P M (∅). So consider the set L of rules of the

form
c[k + 1]=v ⇐ (c1=v1 ∧ · · · ∧ cn=vn)[k + 1]

such that c[k + 1]=v ∈ S and X |= (c1=v1 ∧ · · · ∧ cn=vn)[k]. We define a
sequence of sets E0, . . . , Ej−1, as shown in Section 3.1.1 (the presence of the
time-stamp k+1 is clearly not problematic for us). Further, we define a sequence
E∗

0 , . . . , E∗
j−1, by

E∗
i = {c[k + 1]=v | c ∈ Ei and X |= c[k + 1]=v}

We will use our sequence of sets E∗
i in a proof by induction on i. We claim that

the following holds:

∀(c[k + 1]=v ∈
j−1⋃
i=0

E∗
i) caused(c=v,k+1) ∈ Tω

P M (∅) (3.2)

Base (i = 0): Assume c[k + 1]=v ∈ E∗
0 , so that c ∈ E0. Then clearly, c depends

on no constant in CL (by Theorem 3.7). Thus evidently either c[k + 1]=v is at
the head of no law in L, or else it is at the head of a law c[k +1]=v ⇐ >. If the

3.3. Proof 67

former, then c[k + 1]=v ∈ S′, and so caused(c=v,k+1) ∈ Tω
P M (∅). If the latter,

then causes(c=v,[]) must be a fact in our logic program PM , and thus clearly
as all caused([], k+1) is in Tω

P M (∅), we have caused(c=v,k+1) ∈ Tω
P M (∅).

So we have our base case.
Induction step: Assume the result for i 6 l, so that where c[k + 1]=v ∈ E∗

i for
some i 6 l, we have caused(c=v,k+1) ∈ Tω

P M (∅). We will show the result for
i = l + 1.
To that end, let c[k + 1]=v ∈ E∗

l+1. Then there is some law

c[k + 1]=v ⇐ (c1=v1 ∧ · · · ∧ cn=vn)[k + 1]

in L with X |= (c1=v1 ∧ · · · ∧ cn=vn)[k + 1]. Clearly, however, c depends
on c1, . . . , cn, so that by Theorem 3.7, we must have that c1, . . . , cn are in
E0, . . . , El, so that by the definition of the E∗

i , the c1[k + 1]=v1, . . . , cn[k +
1]=vn are in the E∗

0 , . . . , E∗
l . Then by our induction hypothesis, we have

that caused(c1=v1,k+1), . . . , caused(cn=vn,k+1) ∈ Tω
P M (∅). As we have that

causes(c=v, [c1=v1,...,cn=vn]) ∈ Tω
P M (∅), then also caused(c=v,k+1) ∈

Tω
P M (∅), which is our induction step concluded.

Thus, by induction, we have our result (3.2).
It is clear that

S =
j−1⋃
i=0

E∗
i

so that we have now concluded our (outer) induction step for caused/2.
And thus, we have shown by induction that if caused(c=v,i) ∈ M , then
caused(c=v,i) ∈ Tω

P M (∅).
all caused/2: The case for an empty list as the first argument is entirely
straightforward.
So, let all caused([c1=v1,...,cn=vn,i) ∈ M . Then by the definition of
M , X |= (c1=v1 ∧ · · · ∧ cn=vn)[i], and thus the atoms caused(c1=v1,i),. . . ,
caused(cn=vn,i) must all be in Tω

P M (∅). The desired result immediately fol-
lows: all caused([c1=v1,...,cn=vn],i) ∈ Tω

P M (∅).
all happen/2: Suppose that all happen([a1=v1,...,an=vn], i) is in M .
Then by an argument which directly parallels that of the preceding case, we
have all happen([a1=v1,...,an=vn], i) ∈ Tω

P M (∅).
clipped/3: Assume clipped(c=v,k,k+1) ∈ M . We proceed according to the
cases which must hold, given the definition of M .
In the first case, we must have a law in D

c=v′ if > after (c1=v1 ∧ · · · ∧ cm=vm) ∧ (a1=v′1 ∧ · · · ∧ an=v′n)

with X |= (c1=v1 ∧ · · · ∧ cm=vm)[k], and X |= (a1=v′1 ∧ · · · ∧ an=v′n)[k]. But
then, by the definition of M , and according to previous cases of the current
result, we have that caused(c1=v1,k),. . . ,caused(cm=vm,k) are in Tω

P M (∅), as
are happens(a1=v1’,k),. . . ,happens(an=vn’,k). So, we must also have that

all caused([c1=v1,...,cm=vm], k),

all happen([a1=v1’,...,an=vn’], k)

are in Tω
P M (∅). Then, by the definition of clipped/3 in PM , we must have that

clipped(c=v,k,k+1) ∈ Tω
P M (∅), as desired.

68 Chapter 3. Efficient Computation of Narratives

In the second case, we must have a law

c=v′ if c1=v1 ∧ · · · ∧ cn=vn

in D, such that X |= (c1=v1 ∧ · · · ∧ cn=vn)[k + 1], which means also that
we have a fact causes(c=v, [c1=v1,...,cn=vn]) in Tω

P M (∅) We must also
have caused(c1=v1,k+1),. . . ,caused(cn=vn,k+1) in M , and so also in Tω

P M (∅).
Thus clearly, by the definition of clipped/3, we get that clipped(k,k+1,c,v)
is in Tω

P M (∅), as we want. That concludes the case for clipped/3.
overridden/2: Assume that overridden(c=v,i) is in M . Then by the def-
inition of M , we have that X |= c[i] = v′ for some v′ 6= v. Thus clearly
caused(c=v’,i) ∈ M , and by previous a previous case of the current proof,
for this v′ with v′ 6= v, caused(c=v’,i) ∈ Tω

P M (∅). But then evidently
overridden(c=v,i) ∈ Tω

P M (∅) as desired.
That concludes the case analysis for our intermediate result, and so we have
shown that M ⊆ Tω

P M (∅). With the previous half of (→), this gives us that
M = Tω

P M (∅), so that M is a stable model of our P .
It remains to check that the four conditions (i)−(iv) are fulfilled. That the
first two are satisfied is an immediate consequence of the definition of M . The
third is a condition relating to never/1 predicates. Assume for contradiction
that there is some never([c1=v1,...,cn=vn]) ∈ P , with some i such that
all caused([c1=v1,...,cn=vn]) ∈ M . Then clearly by the definition of M ,
we have X |= (c1= = v1 ∧ · · · ∧ cn=vn)[i], and as our never/1 fact was included
in P , there must be a law

⊥ if c1=v1 ∧ · · · ∧ cn=vn

in D. But then ⊥ ∈ ((ΓD
t)∗)X , so that X 6|=C (ΓD

t)∗, our desired contradiction.
The case for the fourth condition on the model M goes through similarly.
So, we have shown (→).

(←): Now again suppose we have an interpretation X of the signature of (ΓD
t)∗,

and let M be a stable model of LP (D, t, Init, {Hapsi | 0 6 i < t}) (which we
again abbreviate to P), which satisfies conditions (i)−(iv) given in the statement
of the current proposition. We must show that X |=C (ΓD

t)∗, ie., that X is the
unique model of ((ΓD

t)∗)X . That will clearly be the case if the following are
fulfilled:

• for all i such that 0 6 i < t and all a ∈ σa, there is exactly one v ∈ dom(a)
such that a[i]=v ∈ ((ΓD

t)∗)X ; furthermore, for that v, we have X |= a[i]=v,

• for all i such that 0 6 i 6 t and all c ∈ σf , there is exactly one v ∈ dom(c)
such that c[i]=v ∈ ((ΓD

t)∗)X ; furthermore, for that v, X |= c[i]=v,

• ⊥ 6∈ ((ΓD
t)∗)X .

We consider the three requirements in turn.
Thus, let i be such that 0 6 i < t, and let a ∈ σa. Then as X is an interpretation
of the signature of (ΓD

t)∗, there is a unique member of dom(c) to which X assigns
a; let that member be v, so that X |= a[i]=v. Then by condition (ii) on M ,
we have that v is the only member of dom(a) such that happens(a=v,i) ∈M .
Since M is the least Herbrand model of PM , however, and by the definition
of P , we must have that v is the only member of the domain of a such that

3.3. Proof 69

a[i]=v ∈ Hapsi. But that means, by the definition of (ΓD
t)∗, that v is the

only member of the domain of a such that there is a causal rule a[i]=v ⇐ > ∈
(ΓD

t)∗. Thus it is clear that v is the only member of the domain of a such that
a[i]=v ∈ ((ΓD

t)∗)X . Therefore, our first condition is fulfilled, and we progress
to the second.
Thus take i for 0 6 i 6 t, and c ∈ σf . Again, since X is an interpretation,
we have a unique v ∈ dom(c) with X |= c[i]=v. We must show that [i]c=v ∈
((ΓD

t)∗)X , and that there is no other v′ ∈ dom(c) such that c[i]=v′ ∈ ((ΓD
t)∗)X .

We first show the former, then the latter.
Evidently, as X |= c[i]=v, we have that caused(c=v,i) ∈ M by condition (i)
on M . As, by hypothesis, we have that M is the least Herbrand model of
PM , then clearly caused(c=v,i) ∈ Tω

P M (∅), and also there is a least positive
integer such j that caused(c=v,i) ∈ T j

P M (∅). Now, it must be the case that
one of the five clauses defining caused/2 has an instantiation such that the
head is caused(c=v,i), and all conjuncts of the body are members of T j−1

P M (∅).
We accordingly proceed by a case analysis of the five (types of) clauses in the
definition of caused/2.
Clause 1: in this case, we must have i = 0 and init(c=v) ∈ T j−1

P M (∅). But
then clearly init(c=v) ∈ P , so that by the definition of P , c[i]=v ∈ Init. But
then c[i]=v ⇐ > is a causal law in (ΓD

t)∗, so that clearly c[i]=v ∈ ((ΓD
t)∗)X as

desired.
Clause 2: clearly, we must have some dynamic law

c=v if > after (c1=v1 ∧ · · · ∧ cm=vm) ∧ (a1=v′1 ∧ · · · ∧ an=v′n)

in D such that

A = {caused(c1=v1,i-1), . . . , caused(cm=vm,i-1),
happens(a1=v1’,i-1), . . . , happens(an=vn’,i-1)}

are such that A ⊆ T j−1
P M (∅). But then since M is the least Herbrand model of

PM , we must have A ⊆M , and so by conditions (i) and (ii) on M , evidently

X |= (c1=v1 ∧ · · · ∧ cm=vm)[i− 1] ∧ (a1=v′1 ∧ · · · ∧ an=v′n)[i− 1].

Thus, given the existence of the dynamic law whose head is c=v, mentioned
above, and the way in which (ΓD

t)∗ is formed, clearly we have c[i]=v ∈ ((ΓD
t)∗)X

as desired.
Clause 3: here, we must have some static law

c=v if c1=v1 ∧ · · · ∧ cn=vn

in D such that for

A = {caused(c1=v1,i), . . . , caused(cn=vn,i)}

we have A ⊆ T j−1
P M (∅). Then, by condition (i) on M , we get

X |= (c1=v1 ∧ · · · ∧ cn=vn)[i],

and so c[i]=v ∈ ((ΓD
t)∗)X , as desired.

Clause 4: as inertial(c=v) ∈ T ∗
P M (∅), we have that inertial c=v must be a

law of D, and thus clearly there is a causal law

c[i]=v ⇐ c[i]=v ∧ c[i− 1]=v

70 Chapter 3. Efficient Computation of Narratives

in (ΓD
t)∗. However, as the body of the (instantiation of the) fourth clause

is required to be true, we also have that caused(c=v,i-1) ∈ T j−1
P M (∅), and so

caused(c=v,i-1) ∈M , which by condition (i) on M means that X |= c[i−1]=v.
But then we have X |= c[i]=v∧c[i−1]=v, so that c[i]=v ∈ ((ΓD

t)∗)X as required.
Clause 5: we know for this that default(c=v) ∈ D, which gives us that there
is a causal law

c[i]=v ⇐ c[i]=v

in (ΓD
t)∗. It is immediate that c[i]=v ∈ ((ΓD

t)∗)X .
So, we have shown the first half of what we need, that where X |= c[i]=v, then
c[i]=v ∈ ((ΓD

t)∗)X . It remains to show that there is no other v′ ∈ dom(c) for
which c[i]=v′ ∈ ((ΓD

t)∗)X .
Thus, suppose for contradiction that there is c[i]=v′ ∈ ((ΓD

t)∗)X , for v′ 6= v.
Then there must be some causal law c[i]=v′ ⇐ F in (ΓD

t)∗ such that X |= F .
A little thought shows that such a causal law cannot stem from an inertial or
default law of D, nor from any of the sets Init or Hapsi. Thus the law must
be a ‘regular’ static or dynamic law of D (i.e., one that is not an expression of
default or inertial behaviour), and is thus of one of the forms:

• c[i]=v′ ⇐ c1=v1 ∧ · · · ∧ cn=vn, or

• c[i]=v′ ⇐ (c1=v1 ∧ · · · ∧ cm=vm)[i− 1] ∧ (a1=v′1 ∧ · · · ∧ an=v′n)[i− 1].

In the first case, we have X |= (c1=v1 ∧ · · · ∧ cm=vm)[i], and so by the first
condition on M , and letting A be {caused(c1=v1,i), . . . , caused(cm=vm,i)},
we have A ⊆ M . But as M = Tω

P M (∅), then there must be some least positive
integer j such that A ⊆ T j

P M (∅). Now,it is evident that caused(c=v’,i) ∈
T j+2

P M (∅), and caused(c=v’,i) ∈M . However, by the definition of M , we have
that X |= c[i]=v′, which is impossible as v′ 6= v and X |= c[i]=v. So we have a
contradiction.
Thus, suppose instead that there is a causal law of the second of the forms
enumerated above, and that we have X |= (c1=v1 ∧ · · · ∧ cm=vm)[i − 1] and
X |= (a1=v′1 ∧ · · · ∧ an=v′n)[i− 1]. Let

A = {caused(c1=v1,i-1), . . . , caused(cm=vm,i-1),
happens(a1=v1’,i-1), . . . , happens(an=vn’,i-1)}

so that by the first and second conditions imposed on M , we have A ⊆M . So,
A ⊆ Tω

P M (∅), and there is again a least integer j such that A ⊆ T j
P M (∅). It

is obvious that all happen([a1=v1’,...,an=vn’], i-1) ∈ T j+n
P M (∅) and for

similar reasons, that all caused([c1=v1,...,cm=vm], i-1) ∈ T j+m
P M (∅), so

letting p be the greater of m and n, both these atoms are members of T j+p
P M (∅).

It is therefore clear that, given the nature of the third clause defining caused/2,
we must have caused(c=v’,i) ∈ T j+p+1

P M (∅), so that caused(c,v’,i) ∈ M ,
and thus as before X |= c[i]=v′, which is a contradiction.
So, under the supposition of X |= c[i]=v, we have shown that there can be no
other v′ ∈ dom(c) such that c[i]=v′ ∈ ((ΓD

t)∗)X .
That completes the second of our main requirements for showing (←). We must
now prove that ⊥ 6∈ ((ΓD

t)∗)X .
So, suppose for contradiction that ⊥ ∈ ((ΓD

t)∗)X . This can only happen in two
ways:

3.4. Consistency and Models 71

• there is ⊥ if c1=v1∧· · ·∧cn=vn in D, with for some i such that 0 6 i 6 t,
X |= (c1=v1 ∧ · · · ∧ cn=vn)[i], or

• there is ⊥ if > after (c1=v1 ∧ · · · ∧ cm=vm) ∧ (a1=v′1 ∧ · · · ∧ an=v′n) in
D, with for i such that 0 6 i < t, X |= (c1=v1 ∧ · · · ∧ cm=vm)[i] and
X |= (a1=v′1 ∧ · · · ∧ an=v′n).

In the first case, let A stand for {caused(c1=v1,i), . . . , caused(cn=vn,i)}. By
the definition of M , we get A ⊆ M . Yet as never([c1=v1,...,cn=vn]) ∈ M ,
condition (iii) on the definition of M is broken, yielding a contradiction.
Alternately, suppose there is a dynamic law with ⊥ as its head, according to
the above. Then letting

A = {caused(c1=v1,i), . . . , caused(cm=vm,i),
happens(a1=v1’,i), . . . , happens(an=vn’,i)}

it is obvious that A ⊆ M by the definition of M , so that there is some
least j for which A ⊆ T j

P M (∅). Now, let p be the greatest of m and n,
and so also all caused([c1=v1,...,cm=vm],i) ∈ T j+p

P M (∅) and we also have
all happen([a1=v1’,...,an=vn’],i) ∈ T j+p

P M (∅). It now obviously follows
that these two all caused/1 and all happen/2 atoms are in M , which to-
gether with the presence of

nonexecutable([a1=v1’,...an=vn’], [c1=v1,...,cm=vm]).

contradicts condition (iv) on the definition of M .
Thus, we have derived a contradiction from the supposition that ⊥ ∈ ((ΓD

t)∗)X ,
and so the third of our main conditions on the direction (←) of our proof is
shown.
And with it our result. y

3.4 Consistency and Models

Theorem 3.10 guarantees that, where X is an interpretation of the signature of
an action description D of EC+, then X is a model of ΓD

t iff X corresponds to
a stable model of the logic programs we describe; models of the causal theories
and logic programs completely agree in the answers they give to appropriate
queries. Yet an important question remains. Since our objective here is to work
entirely within a logic-programming framework, how can we be sure that the
programs LP (D, t, Init, {Hapsi | 0 6 i < t}) which we use determine as their
stable models sets of atoms which correspond to interpretations of σt? And if
a given logic program, complete with information about the initial state and
narrative of events, does have as its stable models only sets which correspond to
interpretations, how can we be sure that we do not fall foul of the information
contained in facts of the predicates never/1 and nonexecutable/2?

These questions are pressing. As the objective in using logic programs is to
be able to answer queries about the systems defined in a piecemeal fashion, with-
out constructing entire runs through the transition system in the way CCalc
does, we cannot simply look at the content of the entire stable model, and check
whether it represents an interpretation of σt and breaks no constraint imposed
by never/1 and nonexecutable/2. Our logic programs can use SLDNF to

72 Chapter 3. Efficient Computation of Narratives

answer queries, and though we have proved correctness of the implementation
based on a declarative semantics of stable models, in practice we will have little
to do with those stable models.

Given the relation between EC+ and the event calculus (which we will explore
more thoroughly in Section 3.10), it is not surprising that the same issue occurs
with that formalism. Reasoning tasks in event calculi of the logic-programmed
sort are typically of two kinds: that species of answering questions about the
values of individual fluents, typified in a Prolog query

?- holds_at(c=v, t).

and also the reasoning which ought to be performed before this particular
querying—that which determines whether a narrative of events is possible and
consistent. The latter task can be seen as a matter of checking whether a num-
ber of integrity constraints are satisfied. For instance, if information about a
domain (the initial state, laws governing the initiation of fluents, the narrative
of events) is to imply a consistent narrative, then there should be no point in the
narrative at which the performance of an action causes the same fluent to have
different values. Consider a domain with Boolean action constant a and fluent
constants p and q, and where the effects axioms, initial state and narrative of
events are set by the following clauses:

initially(p=tt).
initially(q=tt).

happens(a=tt, 0).

initiates(a=tt, q=tt, T) :-
holds_at(p=tt, T).

initiates(a=tt, q=ff, T) :-
holds_at(p=tt, T).

In conjunction with the axioms for the event calculus we presented in Section 2.4
(and assuming appropriate groundings), there are certainly stable models for the
above. Yet no stable model contains an atom holds at(q=V,1) for any value of
V, and it is clear that this should be attributed to an inconsistency in the event
calculus program.

A precisely analogous problem occurs with EC+, as it is not hard to imagine:
for even given complete and consistent (in the sense defined in Section 3.2.3)
information about an initial state and narrative, an action description with the
laws

caused p if >
caused ¬p if >

will determine a logic program which has stable models, but which does not
correspond to any interpretation of σt.

So, it remains accurately to define the circumstances in which the logic pro-
grams we defined in Section 3.2 fail to determine interpretations of σt, and then
to describe ways in which we can ensure that our initial states and narratives

3.4. Consistency and Models 73

can be shown to imply a consistent path through the transition system defined
in EC+.

Let D be an action description of EC+ and σ its signature, and suppose we
are given some LP (D, t, Init, {Hapsi | 0 6 i < t}); call this program P . If M
is a stable model of P , we must check that

• for all i 6 t and c ∈ σf , there is an atom caused(c=v,i) ∈M ;

• for all i 6 t and c ∈ σf , there is at most one atom caused(c=v,i) ∈M ;

• for all atoms never(F) ∈ M , we do not have all caused(F,i) ∈ M for
any i 6 t;

• for all atoms nonexecutable(A,F) ∈ M , we do not have both that
all happen(A,i) ∈M and all caused(F,i) ∈M , for i < t.

We consider these checks in turn.
First, it must be true that every fluent constant is caused to have a value in

every state of the run. Constraints which we have imposed on the specification
of the initial state (which is determined by the set Init) mean that for i = 0,
there is at least one value v of c such that caused(c=v,0) ∈ M . Now, for a
given constant c, if there is a law

inertial c

in D, then at every later time i there must be an atom caused(c=v,i) in M
for some value v ∈ dom(c), as a simple argument based on the structure of the
axioms of P shows. (Indeed, it should be intuitively obvious that if c is caused
to have a value initially, and if the value of c is caused to persist by default, then
c will always be caused to have a value.) So our check that all fluent constants
c are caused to have a value at all times of a run, reduces to the check that
all non-inertial constants are caused to have such a value. Similar reasoning
reduces the problem to that of determining that all non-inertial constants for
which there is no law

default c=v

in D are caused to have a value.
So, we must check that for all c such that neither

inertial c nor default c=v

(for some v ∈ dom(c)), and all i with 0 < i 6 t, there is some caused(c=v,i) ∈
M . Checks of various degrees of sophistication can be made here. The most
crude, but simple to implement, is to proceed from i = 1 to i = t successively,
checking each constant c in turn. We will not describe how to do this in detail,
except to say that it is convenient in this process to make use of the sets Ej

which were defined in Section 3.1.1: we can proceed from the constants which
depend on no constant occurring in a static law of D, upwards.

Alternative checks, of greater sophistication, are possible, based on an anal-
ysis of the causal laws of the action description. If, for instance, there is a
fluent constant c whose behaviour is not governed by inertial laws or default
conditions, we can look to see whether a value for c is determined by static or
dynamic laws, one of which must hold in every possible state or across every

74 Chapter 3. Efficient Computation of Narratives

possible transition of the system. As an example, consider an action description
where a Boolean c is free from inertia and default determination as described,
and where there are static laws

caused p if q

caused ¬p if ¬q

in the action description. Suppose too that q is Boolean. It is clear that at least
one of the bodies of the above laws must be true in every state of the transition
system, and so in every state, p is determined to have a value. The general
principle here is that where c is a constant we wish to ensure has a value, and
where there are causal laws

caused c=v1 if F1,

...
caused c=vm if Fm,

caused c=vm+1 if Fm+1 after G1,

...
caused c=vm+n if Fm+n after Gn,

such that, for every transition (s, e, s′) of the transition system, either s′ |= Fi

for some i such that 1 6 i 6 m, or else s ∪ e |= Gk and s′ |= Fm+k for some k
with 1 6 k 6 n, then we have shown that c is caused to have a value in every
state of the run.

Checking that these conditions hold can be more or less complicated; per-
haps the most simple case is represented above, where there are static laws,
one of whose bodies, it can immediately seen, must hold in every state. More
searching analyses could take into account the information given about the ac-
tion components e of transitions. This form of analysis may often be quicker
than moving through a given run, checking that each constant c is caused to have
a value across every transition. (In practice, we have limited ourselves to the
most straightforward kinds of check, as epitomized in the example with static
rules, and combined this with brute-force checking for constants not covered.)

The second check we must perform is to verify that fluent constants of the
action description are not caused to have more than one value in states later
than the first. This situation arises when given a preceding state s and actions
e, no state s′ can satisfy

(ΓD
1)s[0]∪e[0]∪s′[1]

and where the reason for this is not because ⊥ is contained in this reduct,
but because all such reducts would require the same constant c[1] to have two
different values. With definite action descriptions (with which we are exclusively
concerned in EC+), this reduces to there being a pair of causal laws whose bodies
are both true across the transition: two fluent dynamic causal laws

c=v1 if > after A1 ∧ F1 and c=v2 if > after A2 ∧ F2

such that s |= F1 ∧ F2 and e |= A1 ∧A2; or two static laws

c=v1 if F1 and c=v2 if F2

3.4. Consistency and Models 75

such that the bodies F1 and F2 would be required to be true in any succeeding
s′; or laws

c=v1 if > after A1 ∧ F1 and c=v2 if F2

where s |= F1 and e |= A1, and where any succeeding s′ would be constrained to
have s′ |= F2 (in all cases, v1 6= v2). As before, simple cases of this verification
are easy to enumerate: if, for instance, our input narrative has, at a given time
i, e[i] |= a[i]=v′, and there are laws

p if > after a=v′ and ¬p if > after a=v′,

then clearly the input narrative cannot represent a run through the transition
system defined by D, for this run breaks down at time i. As previously, this
checking may not always reduce to such simple cases, and we are either forced to
be sophisticated in our analyses or to employ a constant-by-constant brute-force
method.

Finally, we need to ensure that ⊥ is not caused. It could be so in two ways:
through a fluent dynamic or a static causal law. In the former case, there will
be a law

nonexecutable A if F

in the action description, where F is made true by the fluent constants at some
step i of a run, and A is made true by the action constants at the same time.
Where F is empty, and the law has the form ⊥ if A, then the check is easy to
make; otherwise we need an inductive process which starts at time 0 and moves
incrementally through the run, checking that F is not satisfied at any time. In
the latter case, with a static rule whose head is ⊥, the same process can be
used.

As an example, consider the ‘farmyard’ domain (see Section 2.1.7), with the
initial state and narrative of actions here:

init(alive(bill)=tt). init(loaded=ff).
init(alive(turkey)=tt). init(smiling(bill)=ff).
init(loc(bill)=house). init(smiling(turkey)=tt).
init(loc(turkey)=barn). init(target=none).

happens(load=tt, 0).
happens(aim=field, 1).
happens(walk(bill)=field, 2).
happens(shoot=tt, 3).
happens(walk(turkey)=house, 4).
happens(load=tt, 6).
happens(walk(turkey)=barn, 7).
happens(miracle(bill)=tt, 8).
happens(shoot=tt, 9).
happens(walk(bill)=house, 10).
happens(miracle(turkey)=tt, 11).

(This is the same initial information and narrative of actions we use in Sec-
tion 3.6). Now, the set Init clearly represents an initial state, as each fluent
constant is assigned a single value, and the interpretation is consistent with the

76 Chapter 3. Efficient Computation of Narratives

static laws of the action description: those static laws are

alive(x) if smiling(x)
¬smiling(x) if ¬alive(x)

(for x ∈ {Bill,Turkey}), and the only body of one of these made true in the
initial state is smiling(Turkey); since we also have alive(Turkey) ∈ Init, the
atoms must form a state.

The next stage is to check the narrative, and this—given the exogeneity of
all action constants—is simply a matter of verifying that each such constant
has a unique value at every time of the narrative. Given the way in which our
implementation of EC+ automatically fills out partial narratives, in line with
default values for action constants, to full interpretations of σa

t , we immediately
have that the events above determine a unique value for each member of σa

t .
Since there is a law inertial c for each fluent constant c in the signature, we

are assured that the fluent constants are all caused to have values. In order to see
whether those caused values are, for each fluent constant at each time, unique,
we first find all pairs of causal laws which might be true across transitions, where
the heads of the two laws assign different values to the same constant. There
are 21 such pairs in the action description, three of which are

caused loc(Turkey)=field if > after walk(Turkey)=field
caused loc(Turkey)=house if > after walk(Turkey)=house

caused target=house if > after aim=house
caused target=none if > after load

caused ¬smiling(Turkey) if ¬alive(turkey)
caused smiling(turkey) if > after miracle(turkey) ∧ ¬alive(turkey)

Elementary checking can show that the first pair of causal laws, both fluent
dynamic, presents no problem: regardless of the initial state and narrative of
actions, the bodies of any of the pairs of causal rules which result from these
laws (the pairs for each time-stamping, in ΓD

12) can never both be true. This is
obvious, given that the laws’ bodies are conjunctions which exclude each other
by the presence of the same action constant walk(turkey) in each, associated
with a different value. The second pair of laws cannot be seen to be safe im-
mediately, apart from the details of the initial state and event narrative. Yet in
fact, if we consider the full narrative of events implied in our input, we see that
aim=house and load are never true together, across any of the twelve transitions
forming our run. So the second pair of laws is safe.

Verifying that the third pair of laws does not yield causal rules whose bodies
are jointly satisfied is more involved. Inspection of the bodies of the laws shows
that the bodies themselves do not exclude each other in the manner of the
first pair—indeed, as we are dealing with a static law and fluent dynamic law,
this would be impossible. Similarly, the narrative of events cannot remove all
threats, because

happens(miracle(turkey)=tt, 11)

3.5. Implementation 77

is part of our narrative. Although other transitions of the run are safe—
because the full narrative implied by our input events makes miracle(Turkey)
true at no other time—more work is necessary to show that conflicting values
for smiling(Turkey) are not caused in the state at time 12. This is either a mat-
ter of proving that ¬alive(Turkey) one of the bodies of the pair must be false,
which amounts to proving that alive(Turkey) must be true either at time 11 or
12. We do this by methods described above.

Finally, we must show that ⊥ is not caused. This would occur when there
are fluents F and (possibly) actions A which are implied (at some time i) by
the partial narrative we submit as input, but where there is a law

nonexecutable A if F or caused ⊥ if F

in the action description. In the run of the farmyard example we are considering,
there are no static laws having ⊥ as their head; there are, once groundings have
been made, 12 nonexecutable laws in the action description, and as there
are 12 transitions to consider (the run is of length 12), that gives 144 cases to
verify. Of these, 134 can be pruned easily because the action component of the
transition does not make the relevant walk(x)=l action true. The others must
be checked by moving through the supposed run from the initial state to the
final state, verifying that across any transition at which walk(x)=l is true, both
loc(x)=l and ¬alive(x) are false. That can be done quickly, using the axioms of
EC+.

It will frequently be the case that we have an intuitive confidence that the
action descriptions D we write down, and the information about initial states
and narratives of events we supply, do determine stable models of our logic
programs which represent interpretations of the signature Γt, for a t represent-
ing the length of run through the system. In simple cases the checking for
consistency we have described above will be unnecessary. But action descrip-
tions of EC+ are often complicated, and may determine interactions which are
not wholly foreseeable; in these circumstances the checking becomes of great
importance.

3.5 Implementation

We have written a program which enables one to input action descriptions of
EC+, together with specifications of an initial state Init, and of a narrative of
events Haps0, . . . ,Hapst−1 leading up to some maximal time t. Then, one can
pose queries to the system about which fluents are caused to have which values
in different states of the (implicit) transition system. The program is written in
Prolog, and will run on Linux under SICStus2 (tested under version 3.9.1 and
later), SWI-Prolog3 (tested under 5.2.8 and later) and YAP-Prolog4 (4.4.3 and
later). A number of other features are included in the program, including the
ability to write the transition systems defined by the action descriptions to file,
in a format which can be processed by the dot graph-drawing program (which
is part of a suite of open source programs known as Graphviz5). We have found

2http://www.sics.se/sicstus/
3http://www.swi-prolog.org/
4http://www.ncc.up.pt/~vsc/Yap/
5http://www.research.att.com/sw/tools/graphviz/

78 Chapter 3. Efficient Computation of Narratives

the latter to be a very useful visualization tool when working with domains of
EC+.

Another very useful feature is the way in which actions forming part of a
narrative can be represented implicitly, without needing to be written down
in full (this was alluded to earlier, in Section 3.2.3). For consider a Boolean
action description of EC+ in which there are many action constants, and the
runs we are modelling are long. The number of action constants evaluated
to the Boolean value t at any given time may be low, and it would be long-
windedly inconvenient to specify all the instances, over a long run, where an
action constant a is evaluated to f. For this reason we include in our programs
government of the default values of these constants. Let t be the length of run
in which we are interested (so that there must be interpretations of σa[i] for
0 6 i < t). If, for given a ∈ σa and i, there is no atom

happens(a=v,i).

for any v ∈ dom(a) in our logic programs, and f ∈ dom(a), then we assume that
a[i]=f is intended. If, on the other hand, f 6∈ dom(a) but none ∈ dom(a), we
assume that a[i]=none is intended. Where an action constant a has possible
values f and none, these are usually intended to represent that the action a is
not ‘performed’ (where a denotes the action of some agent), or else does not
‘occur’ (where a is an event for which no agent is responsible). The sample
narrative which we present for the ‘farmyard’ domain in Section 3.6 makes use
of these defaults, and enables the narrative to be presented very concisely, given
the largely Boolean domain and sparse occurrence of actions which evaluate to
anything other than f or none.

The way in which what can be called ‘partial narratives’ are filled out into
complete information about actions performed, to satisfy our requirements on
completeness, is customizable. If desired, the user may set a value other than f
to be the default, or may set different values for different action constants.

Some variants of the Event Calculus use Prolog negation by failure to
accomplish the same end of filling out partial narratives into the implicitly
defined full narrative of events. In particular, many variants insist on a Boolean
signature, albeit implicitly defined, where the occurrence of an action a at time
i is represented by the presence of a fact

happens(a, i).

in the logic program. Whenever such an atom does not occur, it is assumed
that the action a does not occur either.

3.5.1 Queries and Explanatory Traces

Given as input a representation of an action description D of EC+, together with
a description of the initial state and a narrative, which mentions the performance
of actions up to some time t − 1, several types of query are supported by our
implementation:

• q(c=v, i): calling this, for some c ∈ σ, elicits an answer from Prolog
whether or not there is a cause for the fluent c to have value v at time i,
with 0 6 i 6 t. The argument c may contain a variable (though not itself
be one), the argument v may be or contain a variable, and the argument

3.5. Implementation 79

i may be a variable. In these cases, Prolog will output all bindings of
the variables for which fluent c is caused to have value v at time i;

• q([c1=v1,i1,...,cn=vn,in]): check whether, for 1 6 j 6 n, cj is caused
to have value vj at ij . Variables may be included as for the first type of
query;

• narrate: outputs the entire narrative and information on states;

• narrate(file): the same as the previous, but outputs to the file file;

• trans(flag): writes the transition system defined by the input action
description to file, and then runs dot on the file to make a PostScript
version. If flag is y, then gv is started on the file written.

Further, each of the queries described above, of the predicates q/1 and q/2,
may take an additional, final argument of the form d(k), with k a non-negative
integer. These augmented queries, in addition to doing the work of the original
q/1 and q/2, exploit the style of computation we have implemented in order
to give an explanation of why any computed answer is an answer to the query.
The integer k represents the amount of detail required in the explanation; more
precisely, k is the depth of recursion through the axioms of our logic program
after which we stop printing explanatory information. In this way, a query
q(c=v,i,d(0)) would ask for no explanatory information and thus be equivalent
to a query q(c=v,i); whereas if c=v holds at time i because of some causal law

caused c=v if > after a=t ∧ p=f

with happens(a=tt,i’) (where i is the successor of i’) as part of the input
narrative and p=ff established to be true at i’, then a query of q(p=V, 1,
d(1)) would give:

?- q(p=V, 1, d(1)).

1: p=1 - dynamic law -
p=1 if true after a=tt & p=ff

V = 1

The information here represents that the implementation has shown p[1]=1 by
using the fluent dynamic law above. More detailed examples are shown in
Section 3.6.

It may be obvious that, in an important sense, explanations for some fluent’s
being caused may not be unique. Suppose, for example, that all fluents are
inertial, and there is some static law

c=v if c′=v′

in an action description. In some model X, if we have X |= c′[i]=v′ and X |=
c′[i + 1]=v′ (and thus also X |= c[i]=v and X |= c[i + 1]=v), then what is the
‘explanation’ for X |= c[i + 1]=v? Is it caused by an inertial carrying-through
of the value of c at i, or as a ramification of c′ at i + 1? In fact, both are
plausibly viewed as explanations. In our implementation, if there is such an

80 Chapter 3. Efficient Computation of Narratives

overdetermination of causes for a fluent’s value, we only pick one explanation
to display, and which of the various possible explanations we chose has been
determined by the order of axioms in the logic programs for EC+. Thus, amongst
the four possible explanations for a fluent atom’s holding, explanations resting
on dynamic laws, static laws, inertia, or default values, will be chosen in that
order. In practice this seems to us to give very helpful results.

This feature of multiple causes for a given fluent is discussed again in Sec-
tion 3.7, with reference to measures for avoiding the recomputation of values
for fluents which we have implemented.

3.6 Example—the Farmyard

As an example, we show some queries of the ‘Farmyard Resurrection’ domain,
which we presented as a C+ action description in Section 2.1.7. It can be seen
that this action description also qualifies as an EC+ domain. The input file for
the entire domain is shown in Appendix A. Let Dfrm be the name of the EC+
action description.

The narrative and initial conditions are represented by the following facts:

init(alive(bill)=tt). init(loaded=ff).
init(alive(turkey)=tt). init(smiling(bill)=ff).
init(loc(bill)=house). init(smiling(turkey)=tt).
init(loc(turkey)=barn). init(target=none).

happens(load=tt, 0).
happens(aim=field, 1).
happens(walk(bill)=field, 2).
happens(shoot=tt, 3).
happens(walk(turkey)=house, 4).
happens(load=tt, 6).
happens(walk(turkey)=barn, 7).
happens(miracle(bill)=tt, 8).
happens(shoot=tt, 9).
happens(walk(bill)=house, 10).
happens(miracle(turkey)=tt, 11).

We give a record of a sample session with EC+, where the following questions
are asked:

• is Bill alive at time 7?

• what are the locations of all agents at time 10?

• at which times are Bill and the Turkey at the same location?

We have omitted, for clarity, the usual Prolog response No to a query for which
all answers have already been computed.

?- q(alive(bill)=tt, 7).

3.6. Example—the Farmyard 81

?- q(loc(X), Y, 10).

X = turkey
Y = barn ;

X = bill
Y = field ;

?- q([loc(bill)=X, T, loc(turkey)=X, T]).

X = field
T = 7 ;

?-

The results should be clear: where

X = s0[0] ∪ e0[0] ∪ s1[1] ∪ e1[1] ∪ · · · ∪ e11[11] ∪ s12[12]

is a model of the causal theory ΓDfrm

12 which satisfies the input narrative and
initial state, we have:

X 6|= alive(bill)[7]
X |= loc(turkey)[10]=barn ∧ loc(bill)[10]=field
{(x, t) | X |= loc(bill)[t]=x ∧ loc(turkey)[t]=x} = {(field, 7)}

Or, in words: bill is dead at time 7; at time 10 turkey is in the barn and bill
in the field ; and the only the time at which bill and turkey are at the same
location is time 7, when they meet in the field.

The next query asks for an explanation, effectively tracing the course of
computation. Thus, it is asked whether Bill is caused to be dead at time 5—
and if he is so caused, an explanation is to be given, to a level of 6. Fluents are
given as output, together with the times at which they are caused, followed by
a short description of the means of their causation (the axiom which was used
to prove them). If a dynamic or a static law was used in their proof, then it
is printed. Then, on the next line down and at an indentation, the manner of
causation of the conditions for the dynamic or static law are shown—with the
condition for inertial persistence being the fluent in question holding at the time
immediately preceding. The level of indentation then corresponds to the number
k—in the current instance, k = 6. The output itself should aid understanding:

?- q(alive(bill)=ff, 5, d(6)).

5: alive(bill)=ff - inertially
4: alive(bill)=ff - dynamic law -

[alive(bill)=ff if true after shoot=tt &
loaded=tt &
target=field &
loc(bill)=field]

3: happens(shoot=tt)
3: loaded=tt - inertially

82 Chapter 3. Efficient Computation of Narratives

2: loaded=tt - inertially
1: loaded=tt - dynamic law -

[loaded=tt if true after load=tt]
0: happens(load=tt)

3: target=field - inertially
2: target=field - dynamic law -

[target=field if true after aim=field]
1: happens(aim=field)

3: loc(bill)=field - dynamic law -
[loc(bill)=field if true after walk(bill)=field]
2: happens(walk(bill)=field)

Yes
?-

The queries entered above referred to particular fluents and variables, possi-
bly with variables. To view the entire narrative, as already described, narrate is
used; the output has been formatted to resemble that of CCalc, and constants
taking the values f or none have not been printed.

?- narrate.

0: smiling(turkey)
0: loc(bill)=house
0: loc(turkey)=barn
0: alive(bill)
0: alive(turkey)

ACTION: load

1: smiling(turkey)
1: loc(bill)=house
1: loc(turkey)=barn
1: alive(bill)
1: alive(turkey)
1: loaded

ACTION: aim=field

2: smiling(turkey)
2: loc(bill)=house
2: loc(turkey)=barn
2: alive(bill)
2: alive(turkey)
2: target=field
2: loaded

ACTION: walk(bill)=field

3: smiling(turkey)

3.6. Example—the Farmyard 83

3: loc(bill)=field
3: loc(turkey)=barn
3: alive(bill)
3: alive(turkey)
3: target=field
3: loaded

ACTION: shoot

4: smiling(turkey)
4: loc(bill)=field
4: loc(turkey)=barn
4: alive(turkey)
4: target=field

ACTION: walk(turkey)=house

5: smiling(turkey)
5: loc(bill)=field
5: loc(turkey)=house
5: alive(turkey)
5: target=field

ACTION:

6: smiling(turkey)
6: loc(bill)=field
6: loc(turkey)=house
6: alive(turkey)
6: target=field

ACTION: load walk(turkey)=field

7: smiling(turkey)
7: loc(bill)=field
7: loc(turkey)=field
7: alive(turkey)
7: loaded

ACTION: walk(turkey)=barn aim=barn

8: smiling(turkey)
8: loc(bill)=field
8: loc(turkey)=barn
8: alive(turkey)
8: target=barn
8: loaded

ACTION: miracle(bill)

84 Chapter 3. Efficient Computation of Narratives

9: smiling(bill)
9: smiling(turkey)
9: loc(bill)=field
9: loc(turkey)=barn
9: alive(bill)
9: alive(turkey)
9: target=barn
9: loaded

ACTION: shoot

10: smiling(bill)
10: loc(bill)=field
10: loc(turkey)=barn
10: alive(bill)
10: target=barn

ACTION: walk(bill)=house

11: smiling(bill)
11: loc(bill)=house
11: loc(turkey)=barn
11: alive(bill)
11: target=barn

ACTION: miracle(turkey)

12: smiling(turkey)
12: smiling(bill)
12: loc(bill)=house
12: loc(turkey)=barn
12: alive(bill)
12: alive(turkey)
12: target=barn

Yes
?-

3.7 Other Measures to Increase Efficiency

A further consequence, beyond that of the need to consider only fluents and
actions causally relevant to the truth of fluent constants when answering queries,
of finding an implementation for EC+ which uses a logic-programming language
such as Prolog, is that we can make use of the logic-programmer’s standard
bag of tricks for improving efficiency.

The actual Prolog implementation of EC+ we have developed employs sev-
eral methods for reducing redundancy in the computation of answers to queries,
which we will describe in this section. The first is the device of tabling : storing
computed answers to queries, so that when the same query is posed later in the

3.7. Other Measures to Increase Efficiency 85

Prolog session, answers may be retrieved directly from the database rather
than recomputed. Our implementation of tabling has been derived from that
of Azevedo in his Ph.D. thesis [dSA95]. The second method we use, related to
tabling but solving a slightly different problem of redundancy, is that of check-
ing whether variables present in the top-level query of caused/3 are repeatedly
grounded in identical ways.

The usefulness of both methods can easily be seen, even before we describe
their implementation in detail. In EC+ action descriptions there is a recurrent
phenomenon of what may be termed causative overkill, which occurs when a
constant of the signature is caused to have its value in several different ways.
Consider, as an example,the Boolean action description with signature σf =
{p, q}, σa = {a}, shown in Figure 3.2. One transition of this action description,

inertial p, q

exogenous a

caused q if p

caused q if > after a
¬p,¬q

p, q

¬p, q

¬a a

¬a

a

a

¬a

Figure 3.2: System for causative overkill

as can be seen in the diagram, is

({p, q}, {a}, {p, q})

Yet the question of what the reason is for q’s holding in the successor state of
that transition has three plausible answers: through inertia, because of the static
law and as p holds in the same state, and also because of the fluent dynamic
law. These three ways of answering the question of why q is caused to be true
in the transition above, correlated with the presence of causal laws in the action
description, are also reflected in the axioms of EC+, and a naive query of

?- caused(q, V, 1).

(assuming an appropriate initial state and narrative) might compute the answer
V 7→ t three times. In the presence of long narratives and complicated action
descriptions of EC+, this recomputation of identical answers can ramify to an
intolerable degree. In cases where variables occur in the constant, rather than
the value, this is particularly undesirable, for—in an example schematic but
all too realistically illustrative—one might wait for scores of identical answers
X 7→ monkey, V 7→ onBox to a query of caused(loc(X),V,30) before moving
on to the other answer X 7→ bananas, V 7→ onTree.

As the proof procedure recurses down through the clauses of our logic pro-
gram, moving, by the axioms given in Section 3.2.4, from later times to earlier,

86 Chapter 3. Efficient Computation of Narratives

variables present in the top-level query become gradually more ground. We
will record the answer substitutions for our top-level query as facts in the dy-
namic Prolog database, and will adapt our logic programs, so that a list of
the variables present in our top-level query is carried around the search tree.
Whenever the top-level variables become instantiated in ways which we have al-
ready seen, we automatically fail, thus removing a potentially enormous amount
of wasted computation in the search tree. This checking to make sure that top-
level groundings are not repeated can be done at all depths of the recursive
proof-procedure.

Clearly it would be possible to be even more thorough-going in checking for
repeated answer substitutions. For suppose that a Boolean action description
contained the causal laws

inertial p(X), q(X), r(X, Y)
caused p(X) if > after q(Y) ∧ r(X, Y).

If our top-level query is caused(p(X),V,30), then checking for identical ground-
ings of the variable X would not prevent, when the system tries to prove
caused(q(Y),tt,29), identical substitutions for Y being found. Yet keeping
track of all variables at all levels of the search tree, in the way that this sug-
gests, quickly becomes costly, and we have chosen to implement the verification
only for variables in the top-level query. (Compromises of looking at the first
n different variables, or variables in the first n levels of recursion, are easily
imaginable.)

The tabling of computed answers is another way we avoid unnecessary re-
computation in our logic programs. This solves a different (if related) problem
to that which checking for repeated answer substitutions addresses. In tabling,
we record answers to queries of caused/3, at all levels of recursion, everywhere
in the SLDNF search tree. A query which succeeds to give a grounding of,
say, caused(c,v,30), is retained for the duration of the session, so that it is
available to subsequent top-level queries. (This is unlike the case with variable
substitutions which have been seen, information about which must be specific
to top-level queries, and which is abolished from the dynamic database between
top-level queries.) Alongside information about the specific ground atoms which
have been proved, we also record information about the form of the query which
was ground to produce the answer. Thus if all answers to a query (possibly con-
taining variables) were found and tabled, we record the fact that the complete
answer substitutions to the query are stored in the database: we know that in
this case, the axioms need not be used in answering the query.

So, when the system needs to prove some atom caused(c,v,t), where c
and v may have variables, it first checks to see whether a query like this, or one
more general than it, has been made before, where all answers were found and
tabled. If this was so, the system will ignore the axioms, and simply extract the
answers from the database. If such a completely answered query was not made,
there may still be tabled answers in the database: our logic program retrieves
any of these which may exist, then proceeds to using the axioms to try and
prove any remaining answer substitutions.

And at the same time as this process of reading and writing to the table
of answers is taking place, the system is still checking to make sure that dupli-
cated substitutions of the top-level variables are not being made. It can be seen

3.7. Other Measures to Increase Efficiency 87

that the two processes are not performing the same work, for first, as has been
mentioned, the tabled values are retained between top-level queries, whilst infor-
mation about variable substitutions is, necessarily, lost between these queries.
Second, it may happen that at different nodes of the search tree, essentially
the same query needs to be proved, although the variables involved are unre-
lated. So, suppose that some way into a computation whose top-level query is
caused(p(X),V,30), we are required to answer a query caused(q(Y),V’,25).
Say the search tree is as in Figure 3.3. We have simplified the representa-

p(X)=V

p(Y1)=V1 p(Y2)=V2

Figure 3.3: Sample search tree; the shaded sub-tree is redundant.

tion in inessential ways, by removing time indices and the outer casing of the
‘caused’ predicate. After the subtrees beginning at all four children of the left-
hand node have been traversed, the Prolog database contains all answers for a
query caused(p(Y1),V1,t) (where t is the relevant time). Now, even if the sys-
tem recorded information about all variable groundings occurring in computed
answers (and not just the top-level ones), checking against the groundings which
have been already seen would not help us, if we presume that Y1 and Y2 are
unrelated (e.g. that they are not both bound to X). Yet the right-hand node
in the search tree is clearly redundant, as it represents the same query as the
left-hand, and modulo the name of the variable concerned, is the root of an
identical sub-tree. Tabling will remove the necessity of re-traversing the whole
sub-tree: in our modified implementation for EC+, the answers of the right-
hand sub-tree would be extracted immediately from the tabled data. During
the process of developing EC+, it was found repeatedly that repetitions of this
sort were ubiquitous, and that their removal through the methods of tabulation
greatly improved the speed of our computations.

In addition to the two methods of checking for duplicated variable substi-
tutions and tabling the results of computations, we partially evaluate our logic
programs, and of course avail ourselves of the features of Prolog’s indexing
method for predicates. We do not comment on that process here, but move on
now to present details of the modifications made to our logic programs in order
to perform tabling and variable-checking. As stressed, the implementation of
the tabling owes its inspiration to [dSA95].

88 Chapter 3. Efficient Computation of Narratives

3.7.1 Information Stored

Suppose our query (which may or may not be top-level) is for caused(C, V, T).
C may contain unbound variables, and V may be or contain an unbound vari-
able. Let C have the form cfunc(~x), where the tuple ~x is possibly of zero
length—in that case C is identical to cfunc. It may be that there was previ-
ously a more general query than the current, for which the system knows it
stored all the answers. If this is so, then there will be a fact

calls cfunc(t, cfunc(~y), V ′) (3.3)

in the database such that for some θ, ~yθ = ~x and V ′θ = V . θ can be the identity
substitution. In general, we will call atoms of the form (3.3) callterms.

If callterms store the questions asked, tableterms store the answers. Let us
suppose our query above had an answer, with the substitution θ′. Then the
following atom will be a fact in the Prolog database:

table cfunc(t, Cθ′, V θ′).

Our program returns ground answers to its queries, and thus tableterms which
are tabled as facts in the database will always be ground; this need not be so
for callterms.

Finally, we turn from tabled questions and answers to stored variable instan-
tiations. Suppose our top-level query is for caused(C, V, T) as before, and let
the free variables in C and V be collected into a list which is bound to List—this
can be achieved by a call to the Prolog in-built predicate free variables/2,
of the form

free variables(dummy(C, V), List)

Each unique answer to our query corresponds to a different instantiation θ of
the list of variables List. Accordingly, whenever we succeed with our top-level
query, we store a fact

var seen(Listθ)

in the database. As has been explained, one can check the current state of the
top-level variables List during the progress of a computation, to ensure one will
not duplicate a result.

In summary, we store dynamically facts of the following predicates:

• calls cfunc/3, for cfunc(~x) ∈ σf , with ~x possibly empty;

• table cfunc/3, similarly;

• var seen/1, with the argument a list of ground terms.

3.7.2 assert callterm/5

In order to enable easy generation of callterms and tableterms, we construct
templates for these when action descriptions are compiled into memory. For
each cfunc and each n such that cfunc(~x) ∈ σf with ~x being an n-tuple, we
include facts in our database:

callterm(cfunc(~y), V, T, calls cfunc(T, cfunc(~y), V))

3.7. Other Measures to Increase Efficiency 89

and
tableterm(cfunc(~y), V, T, table cfunc(T, cfunc(~y), V)).

Here, ~y is an n-tuple of new, unbound variables.
We also make use of the predicate assert callterm/5, which will be used

when we need to update the callterms in our database, after all answers to a
given query have been found. Here is the clause which defines this predicate:

% ---------- assert_callterm/5 ----------

assert_callterm(C, V, T, N, Flag) :-
callterm(C, V, T, CallTerm),
(

N = 0,
copy_term(CallTerm, CCallTerm),
CallTerm,
subsumes(CCallTerm, CallTerm),
retract(CallTerm),
fail
;
(

(N = 0 ; Flag = 1)
->

assert(CallTerm)
;

true
)

).

After we have extracted relevant answers for a query from the database, and any
remaining answers have been proved using methods of the original caused/3,
we call assert callterm/5. Let our query have been for cfunc(~x) = V at time
t. We will have the following bindings on calling the predicate:

C 7→ cfunc(~x)
V 7→ V

T 7→ t

N 7→ 0 if the query is top-level
1 if the query is not top-level

Flag 7→ 1 if the query had no free variables, we proved and tabled it
0 otherwise

Note that ~x and V are not themselves bound (at this point) in accordance with
any of the answers we may have proved along the way, but are as they were
when the query was originally posed.

The last two arguments of this predicate deserve some comment. If the query
is top-level (N = 0), then we can be assured that, when assert callterm/5
is called, all answers to the query have been found and tabled. This may not

90 Chapter 3. Efficient Computation of Narratives

be the case if the query is not top-level (N = 1): for in that case, answers to a
query may be prevented from being found by the checks on duplicate variable
instantiations. However, we can be assured that all answers to a lower-level
query have been found and tabled when that query contained no free variables
and one answer was found (Flag = 1).

So, stepping through the workings of the predicate: if the query is top-level
(N = 0), we can delete all the callterms in the table which are more fully
instantiated than the query. To do this we remove callterms from the database
and test to see whether they θ-subsume the callterm of the query; if they do,
we retract them. That is the work of the lines

copy_term(CallTerm, CCallTerm),
CallTerm,
subsumes(CCallTerm, CallTerm),
retract(CallTerm),
fail

which remove subsumed callterms until there are none left. Clearly, if the query
was not top-level, but was fully ground, then it can have no callterm in the
database, for otherwise (given the definition of caused/5 below) the predicate
assert callterm/5 would not have been called. When all outmoded callterms
have been removed, we may go on to assert a new callterm based on the current,
recently-completed query. We may only do this when we can guarantee that all
answers for the query have been produced, and as the discussion above shows,
these circumstances hold when the test

(N = 0 ; Flag = 1)

succeeds.

3.7.3 caused/5

We must now modify the definition of caused/3 in order to accommodate pro-
cedures for tabling and the checking of duplicate variable groundings. Extra
arguments will be added, corresponding to the variable N which carries in-
formation about whether the query is top-level or not, and the list of variables
Vars for the top-level query—which we will check against facts var seen/1 in our
database. The essence of the code which was originally contained in the defini-
tion given earlier for caused/3 will now be put in a predicate caused axiom/4,
which appears in the second of our new clauses.

% ---------- caused/5 ----------

caused(C, V, T, _, Vars) :-
callterm(C, V, T, CallTerm),
copy_term(CallTerm, CCallTerm),
CallTerm,
CallTerm =@= CCallTerm,
!,
tableterm(C, V, T, TableTerm),
TableTerm,
\+ (var_seen(Seen), Seen == Vars).

3.7. Other Measures to Increase Efficiency 91

caused(C, V, T, N, Vars) :-
copy_term(C, CCopy),
copy_term(V, VCopy),
tableterm(C, V, T, TableTerm),
(

(
TableTerm
;
caused_axiom(C, V, T, Vars),
(

TableTerm
->

true
;

assert(TableTerm)
)

),
(

C == CCopy
->

!,
assert_callterm(C, VCopy, T, N, 1)

;
true

),
\+ (var_seen(Seen), Seen == Vars),
(

N = 0
->

ensure_asserted(var_seen(VC, Vars))
;

true
),
;
assert_callterm(C, V, T, N, 0),
fail

).

We make use of common Prolog predicates, and also the less common
=@=/2, which tests for ‘structural equivalence’. This is stronger than unification
but weaker than ==/2. T1 =@= T2 is true when their tree representation is
identical and they have the same pattern of variables, so that

a(X) =@= a(Y), a(X, Y) =@= a(Y, Z)

are true but

a(X) =@= a(a), a(X, Y) =@= a(Z, Z)

are not.

92 Chapter 3. Efficient Computation of Narratives

Suppose our query is for C having value V at time t, and let C have the
form cfunc(~x) as usual. We enter the first clause defining caused/5 and make
a callterm for our query. We then check to see whether there is a more (or
equally as) general callterm in the database. If there is, then we cut: we know
that we can get all answers for the current query by looking in the table, and
so there is no need to continue to the second clause defining caused/5, which
we use when we need the details of caused axiom/4 to prove answers. After
the cut, if we get that far, we make a tableterm and extract answers from the
table—obtaining multiple answers by backtracking.

What of the line

\+ (var seen(Seen), Seen == Vars) ?

If our query is top-level, then there will be no var seen/1 facts in the database,
and so this query will succeed. If, on the other hand, the query is not top-level,
then we will not want the query to succeed if it has instantiated variables in
Vars in a way we already seen before, for a computed answer to our top-level
query.

Now for the second clause. This will only have been reached if there is
no more general callterm in the table. There may however still be relevant
tableterms in the table, so after making copies of the details of our original
theory (which will be used later), we fetch a tableterm and get values from the
table. If we run out of answers stored in the table, we use our axioms to prove
new values, tabling the latter as we progress.

As has been stated, though our queries may contain variables, when answers
are given all those variables must be fully instantiated. Therefore, if after we
prove our query the C component is the same as it was before the proof, then
that C before proof must have been ground. In that case, there is no need to
backtrack for further answers to our query, and we can cut. That is the purpose
of the next stage:

(
C == CCopy
->

!,
assert_callterm(C, VCopy, T, N, 1)

;
true

),

Note that if we do cut at this stage, we also update the callterms in our database;
we call assert callterm with, importantly, a 1 as its last parameter—denoting
the fact that the query has no variables.

If a cut was not made after the C == CCopy test as described above, we
record a var seen/1 fact if necessary. Backtracking may then show different
values for our query (it is only guaranteed to show all such values when the
query is top-level, because of the presence of checking against seen variables).
After we have backtracked as much as possible, the following is reached:

assert_callterm(C, V, T, N, 0),
fail

The operation of this predicate was described in Section 3.7.2.

3.7. Other Measures to Increase Efficiency 93

3.7.4 Axioms

The definition of caused axiom/4, and related predicates, should be easily un-
derstood, as it builds closely on the original definition for caused/3. The sub-
sidiary predicates given along with that original definition have been modified.

--------------- caused_axiom/4 ---------------

caused_axiom(C, V, 0, _) :-
init(C, V).

caused_axiom(C, V, T1, Vars) :-
0 < T1,
causes(C, V, A, H),
T is T1 - 1,
all_happen(A, T),
all_caused(H, T, Vars).

caused_axiom(C, V, T, Vars) :-
0 < T,
causes(C, V, F),
all_caused(F, T, Vars).

caused_axiom(C, V, T1, Vars) :-
0 < T1,
inertial(C, V),
T is T1 - 1,
caused(C, V, T, Vars),
\+ clipped(C, V, T, T1).

caused_axiom(C, V, T, _) :-
0 < T,
default(C, V),
\+ overridden(C, V, T).

% --------------- all_happen/2 ---------------

all_happen([], _).

all_happen([C=V|Rest], T) :-
happens(C, V, T),
all_happen(Rest, T).

% --------------- all_caused/3 ---------------

all_caused([], _, _).

all_caused([C=V|Rest], T, Vars) :-
caused(C, V, T, 1, Vars),
all_caused(Rest, T, Vars).

94 Chapter 3. Efficient Computation of Narratives

% --------------- clipped/4 ---------------

clipped(C, V, T1, T2) :-
domain(C, V1),
V1 \= V,
tableterm(C, V, T1, TableTerm),
(

TableTerm
->

true
;

(
causes(C, V1, A, H),
all_happen(A, T1),
all_caused(H, T1, [])
;
causes(C, V1, F),
all_caused(F, T2, [])

),
callterm(C, V1, T, CallTerm),
(

CallTerm
->

true
;

assert(CallTerm)
),
assert(TableTerm)

).

% --------------- overridden/3 ---------------

overridden(C, V, T) :-
domain(C, V1),
V1 \= V,
caused(C, V1, T, 1, []).

That ought to be straightforward, apart, possibly, from the definitions of the
final two predicates, clipped/4 and overridden/3. In particular, one might
wonder why the Vars parameter has been changed to the empty list [] in these
predicates, the original Vars not being passed down from where they are called.

First, let us ask what it would mean if we come to a call of clipped/4 or
overridden/3 in a state where a fact var seen([]) has already been asserted in
our database. This would be true if our top-level query had no variables in at
all—the list of variables seen has no members—and if we had already verified
the query. Yet then clearly in that case the test C == CCopy would have been
passed, and the ensuing cut would have excised the possibility of another call to
caused axiom/4. In other words, it is impossible to come to a call of clipped/4

3.7. Other Measures to Increase Efficiency 95

or overridden/3 in a state where a fact var seen([]) has already been asserted.
Therefore any checks of the form

\+ (var_seen(Seen), Seen == Vars)

we perform beneath those calls will succeed. The purpose of ignoring the current
binding of Vars on entering such calls, is therefore to ‘ignore’, in a sense, the
checks for seen variables.6 Why should we want to ignore these tests? The an-
swer is that because the predicates clipped/4 and overridden/3 occur within
the scope of a negation-by-failure (NBF) operator, any bindings occurring in
the new SLDNF tree growing beneath those calls will be ignored if the NBF
call succeeds. Thus such bindings cannot contribute to a further instantiation
of the variables Vars of our top-level query.

3.8 Comparison of Implementations

There are now two different implementations available for answering queries
about narratives defined in EC+. Since action descriptions of EC+ are also sets
of laws of C+, one way of answering queries is to submit the laws, together
with information about the initial state and subsequent actions, to CCalc, and
ask CCalc to find models of ΓD

t which are consistent with the input narrative.
Another way is to use the logic-programmed implementation of EC+ which we
presented in Section 3.2. As the objective of this work has been to make the
answering of queries about fluents much more efficient, by using an event-style of
computation, it is appropriate to compare the performance of our logic programs
to that of CCalc on some sample domains.

We will first consider our running example, the ‘farmyard’ domain of Sec-
tion 2.1.7. The signature of that domain has

σf = {alive(x), loaded, smiling(x), target, loc(x)},
σa = {aim,miracle(x), load, shoot,walk(x)},

for x ∈ {Bill,Turkey}. Domains are Boolean, except that

dom(loc) = {barn,field, house}
dom(target) = {barn,field, house,none}

dom(aim) = dom(walk) = {barn,field, house,none}.

The only static laws in the action description are the two relating the fluent
constants alive(x) and smiling(x); together they mean that, of the four combi-
nations of these fluents for each grounding of x, only three can occur:

{alive(x), smiling(x)}, {alive(x),¬smiling(x)}, {¬alive(x),¬smiling(x)}

There are, in the light of this constraint and the absence of any others, 648 states
in the transition system which the action description defines. Construction of
the system by that component of our implementation which writes a represen-
tation of the transition system to an external file (see Section 3.5) confirms this,
and also shows that there are 133068 transitions; these results are independently

6It would evidently be possible to use a different ‘dummy’ argument than the empty list.

96 Chapter 3. Efficient Computation of Narratives

confirmed by CCalc with mchaff as its propositional satisfaction solver (using
grasp gives incorrect results).

For our first experiment we used the farmyard domain as it stands, with
very simple, related runs, of increasing length. The runs are as represented in
Figure 3.4. In the diagram, the initial state is twice-circled. In all states of

b=field
t=house

b=house
t=barn

b=field
t=barn

b=barn
t=house

b=barn
t=field

b=house
t=field

b 7→ field

t 7→ house

b 7→ barnt 7→ field

b 7→ house

t 7→ barn

Figure 3.4: Runs for the farmyard.

the runs we have ¬loaded, target=none, alive(bill), alive(turkey), ¬smiling(bill),
smiling(turkey). b=house represents loc(bill)=house, and b 7→ field represents
walk(bill)=field. No miracles, aiming, loading or shooting happen on any edges;
where walking isn’t mentioned, it doesn’t occur. (We can think of the run as
representing Bill chasing the Turkey around the farm.)

We started with a run of length 500, and increased the length of the run in
steps of 500, up to 6000 time-steps. Complete information about the initial state,
and complete details of the narrative of actions, were given to our implementa-
tion of EC+ and to CCalc. For each length of run (t = 500, t = 1000, . . . , t =
6000) we asked EC+ to narrate the entire history five times, and recorded the
time taken for computation, ignoring time spent on printing information about
the run to the terminal. The results were averaged. We then performed the
same experiment with CCalc. The results are shown in Table 3.1, and have
been depicted graphically in Figure 3.5. Experiments were performed using SIC-
Stus Prolog 3.12.2 under Linux, with a Pentium IV 3.2GHz processor and 1GB
RAM. The results are encouraging, in that, even when constructing the entire
run through the transition system, EC+ significantly outperforms CCalc.

The second experiment used a similar action description, again based on
the farmyard domain. This time, we wished to hold the length of run constant
(we used a run length of 20) and investigate what happened when the number
of fluents in the signature, and hence laws in the action description, was in-
creased. The action descriptions and signatures are identical to that presented
in Section 2.1.7, where we first described the farmyard domain, except that the

3.8. Comparison of Implementations 97

Length of run Average time (seconds)
CCalc EC+

500 8.406 1.592
1000 28.964 5.556
1500 55.376 11.908
2000 93.508 21.808
2500 143.622 31.728
3000 201.034 45.332
3500 274.902 61.974
4000 351.212 80.328
4500 442.600 99.710
5000 541.580 123.756
5500 661.260 148.442
6000 781.026 175.958

Table 3.1: Comparison of CCalc and EC+, narrate query.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

0

100

200

300

400

500

600

700

800

0

100

200

300

400

500

600

700

800

Length of narrative (time steps)

A
v
e
ra

g
e

ti
m

e
(s

e
c
o
n
d
s)

EC+

CCalc

Figure 3.5: Computation times for the farmyard runaround.

variable x, which originally ranged over the set

{Bill,Turkey},

will now range over

{Bill(i),Turkey(i) | 1 6 i 6 n}.

A series of action descriptions was obtained by taking values of n from the
set {20, 40, . . . , 200}, and the same queries were run, and averaged as before.

98 Chapter 3. Efficient Computation of Narratives

The results are shown in Table 3.2 and Figure 3.6. Again, EC+ shows good

Value of n Average time (seconds)
CCalc EC+

20 6.454 0.52
40 21.106 2.672
60 44.172 7.498
80 76.448 15.862
100 115.286 28.666
120 164.852 46.378
140 221.666 71.824
160 288.492 103.136
180 360.152 143.112
200 445.616 193.274

Table 3.2: Comparison of CCalc and EC+, narrate query on the ‘busy farm-
yard’.

20 40 60 80 100 120 140 160 180 200

20 40 60 80 100 120 140 160 180 200

0

100

200

300

400

500

0

100

200

300

400

500

Value of n (copies of Bill and Turkey)

A
v
e
ra

g
e

ti
m

e
(s

e
c
o
n
d
s)

EC+

CCalc

Figure 3.6: Computation times for the busy farmyard.

performance compared to CCalc, though in this case the way of making the
domain more complicated (by increasing the number of fluents and laws in the
action description) appears to make the advantage of using EC+ over CCalc
of a lower order.

How does EC+ fare when we turn from constructing the entire run through
a transition system, to more specific queries? The answer to this, naturally,
depends on the nature of the query and the laws of the action description which

3.8. Comparison of Implementations 99

defines the transition system. For example, given the narrative of actions for the
farmyard domain which is shown in Section 3.6, a query asking for the value of
loc(Bill) at time 12 would need to look back only as far as the actions occurring
at time 10, when walk(Bill)=house was true. The fact that no more distant
history needs to be considered is a consequence of the presence of the law

walk(x)=l causes loc(x)=l

in the action description, the inertia of loc(x) fluents, and the absence between
times 10 and 12 of any actions which would disturb the value of Bill ’s location.
Clearly, if a narrative of events for this action description has a form similar to

(s0, e0, s1, e1, . . . , et−1, st)

where et−1 |= walk(x)=l, and we are interested in the value of l′ for which st |=
loc(x)=l′ holds, then EC+ should able to provide us with an answer extremely
quickly, regardless of the value of t, whereas CCalc will take longer as we
increase t.

Experiments conducted with the series of runs we used previously in the
‘farmyard runaround’ example confirmed this: in each case we asked, given a
run of length t, what the value of loc(bill) was at time t. In EC+ this was
achieved by a query of the form

q(loc(bill)=V, t),

and the results were, in almost all cases, a time of 0 milliseconds. In CCalc we
extracted the answer by posing a query which included information about the
initial state and events at all times of the run; these are, of course, identical to
the queries we made in the first experiment of this section, and thus the times
can be read from Table 3.1.

This query represents cases which are easy for EC+, demonstrating a phe-
nomenon which occurs frequently: that increasing the length of run does not
effect the time taken to answer specific queries. The same is often true when we
increase the number of fluents in the signature, as we did with the experiments
on ‘busy farmyard’ domains, shown in Table 3.2 and Figure 3.6; answers to a
query the location of Bill1, in a domain with millions of copies of Bill, would
be just as quickly answered—though again, this is a consequence of the specific
details of the action description and narrative.

3.9 The Zoo World

As a longer case study of the expressive possibilities of EC+ and the various
forms of efficiency it affords, we include a formalization of the ‘Zoo World’, a
common test domain for reasoning about action and change.

The Zoo World was first proposed by Erik Sandewall,7 and has been formal-
ized as a C+ action description [AEL+04]; it is one of several sample domains
which comes bundled with the system CCalc, and so it has been easily possible
to conduct experiments with that domain and test the adequacy of its formu-
lation in C+. (Readers are expected to be familiar with the C+ formalization

7See http://www.ida.liu.se/ext/etai/lmw/.

100 Chapter 3. Efficient Computation of Narratives

in the following.) We will not directly translate the C+ action description—
let us call it Dzoo—though we have been guided by that formulation in our
interpretation of the original, loose specification for the domain.

The prose description of the domain mentions a throwoff action, which

[c]an be performed by an animal ridden by a human, and results in
the human no longer riding the animal and ending in a position adja-
cent to the animal’s present position. The action is nondeterministic
since the rider may end up in any such position. If the resultant po-
sition is occupied by another large animal then the human will result
in riding that animal instead.8

The transition systems defined by action descriptions of EC+ cannot be non-
deterministic, and so we have chosen to eliminate throwoff from the actions
which animals in the zoo may perform. Apart from this restriction, the be-
haviour we model is the same as in Dzoo.

Our formalization is shown, in full, in Appendix B. It is, as one would expect,
very similar to the version in C+; we discuss significant differences below.

One important difference is to be found in the treatment of properties of
the domain which do not change over time. These are such facts as that there
are 3 cages, that there is an animal called Dwight whose species is Dingo, that
there is a gate whose two sides are the positions called p1 and p2, and so on.
It would be possible to represent all of this by fluent constants, yet we have
chosen to use Prolog clauses, using the predicates which these clauses define
to make specific what is, essentially, a parameterized action description and
signature. For instance, consider a zoo of the form given in Figure 3.7. There

c

a

d

b

outside

cage(a) cage(b)

Figure 3.7: A sample Zoo topography

are four positions, namely a, b, c and d, and three locations, cage(a), cage(b)
and outside. Two gates, gate(a) and gate(b), connect the relevant cage to the
outside. The relations between positions, locations and gates are as depicted in
the diagram. Now, it would be possible to introduce Boolean fluent constants
neighbour(p1, p2) for every position p1 and p2 in the domain, and to express the
extension of the neighbour relation as causal laws in the action description, such

8Ibid.

3.9. The Zoo World 101

as

caused neighbour(a, b)=t if >,

caused neighbour(b, a)=t if >,

caused neighbour(b, d)=t if >,

caused neighbour(d, b)=t if >,

caused neighbour(c, d)=t if >,

caused neighbour(d, c)=t if >,

and so on, with the appropriate other laws for positions which are not neigh-
bours. (Since we do not allow statically-determined fluent constants in EC+,
we cannot insist that neighbour(p1, p2) is statically determined and then simply
say

default neighbour(p1, p2)=f (p1, p2 ∈ {a, b, c, d})
for here the exogeneity of the initial state would provide us with unintended
models of ΓD

t .) Yet we do not introduce fluent constants in this way. The
relevant portion of our logic program is this:

% ---------- General

neighbour(P1,P2) :-
neighbour(P1,P2,l).

neighbour(P1,P2,_) :-
nb(P1,P2).

neighbour(P1,P2,_) :-
sides(_,P1,P2).

neighbour(P1,P2,l) :-
neighbour(P2,P1,r).

sides(gate(a),a,c).
sides(gate(b),b,d).

flu_constant(accessible(P1,P2)) :-
neighbour(P1,P2).

% ---------- Specific

nb(c,d).

In this way, we parameterize the signature (in the current case, which fluent
constants are of the form accessible(p1, p2)) on the neighbour relation which we
have defined in the Prolog background of our logic program. The ‘general’
clauses above are included in every Zoo World action description; all we need to
include in each particular instantiation of that world’s governing principles, is a
record, in nb/2, of those positions not either side of a gate which are next to each
other. In the C+ action description of [AEL+04], there is a Boolean fluent con-
stant accessible(p1, p2) for every two (not necessarily distinct) positions p1 and

102 Chapter 3. Efficient Computation of Narratives

p2 in the world, something which, over long runs, clearly multiplies the number
of clauses sent to the SAT-solver without good reason—whereas we include only
those fluent constants accessible(p1, p2) which could possibly be true, given the
unchanging information about the structure of the zoo. This sort of parame-
terization, using the very efficient underlying Prolog, is a clear advantage to
the formulation of action domains in EC+ and its logic programs. (Another
advantage of our representation is that it encodes directly the constraint that
the neighbour relation is symmetric.)

Many laws in the C+ formulation of the Zoo World are constraints, causal
laws with ⊥ as their head, the effect of which is to remove states and transitions
from the transition system the formulation defines. In checking that ⊥ is never
caused, which forms part of the process of ensuring that the input narrative and
initial state define a run through the transition system defined by our action
description (see Section 3.4 for more details) we must verify that the bodies of
these constraints are never true of any state or transition. Now, some of the
constraints make reference to properties of the domain which must be modelled
as fluent constants, as they change over time. For instance, the specification
states that an Open Gate action

[c]an be performed by a human when it is located in a position to
the side of the gate. . . 9

and since positions change over time, and the position of a human counts towards
the identity of a state (i.e. it must be represented using fluent constants rather
than action constants), the law

nonexecutable open(H,G) if pos(H)=P

where P is a position not to one side of the gate G, cannot be checked to be ‘safe’
in the manner we require, apart from details of the initial state and narrative.
We may indeed look at the narrative of events to see at which times an action
open(H,G) is performed, and that would require no computation beyond looking
at this input narrative; yet to know whether the relevant pos(H)=P holds at
the same time, we may need to do much computation, using the axioms for EC+
and in the manner described in Section 3.4.

However, there are other constraints which do not make reference to change-
able properties of states in this way, and by our decision to use fluent constants
only to represent properties of states which can change—keeping such static
features of the domain as the zoo’s topology in the background as parameters
of the signature—we have been enabled to check these constraints by simple
Prolog code, which does not draw upon the causal inference mechanism for
EC+. The constraints we can check quickly should perhaps be divided into two
sorts: those which make reference to the narrative of events and those which
do not. For example, in the first category is a constraint stemming from the
stipulation that

[. . .] two large animals can not pass through a gate at the same time
(neither in the same direction nor opposite directions).10

9Ibid.
10Ibid.

3.9. The Zoo World 103

Now, the case of the above for “opposite directions” could be rendered by a
causal law something like

nonexecutable move(A1)=P1 ∧move(A2)=P2 if side1(G)=P1 ∧ side2(G)=P2

∧ large(A1) ∧ large(A2)
(3.4)

supposing that we had fluent constants side1(G) and side2(G), and so on; the
C+ formulation of the Zoo World in [AEL+04] does something similar. Yet
suppose instead we define a predicate constraint/0, one of whose clauses is

constraint :-
large_animal(A1),
large_animal(A2),
A1 @< A2,
happens(move(A1),P1,T),
happens(move(A2),P2,T),
(sides(_,P1,P2) ; sides(_,P2,P1)).

(The meaning of the body should be obvious: sides(g,p1,p2) is true when
a gate denoted by g has positions p1 and p2 as its two sides.) We can load
the clauses defining constraint/0 into Prolog with the EC+ logic program
representing the Zoo World, and query constraint. If this succeeds, then we
know that the input narrative, together with the clauses representing facts about
the zoo’s topology and occupants, is inconsistent in the sense of not defining a
run through the transition system. It is also clear that if a query of constraint
were to fail, this would demonstrate that the causal law (3.4) is, in an important
sense, unnecessary. Of course, adding (3.4) to the action description changes
the labelled transition system it defines; but where D is the action description
of EC+ with, and D∗ the action description without this causal law, we have
that the models of

ΓD
t ∪ {F ⇐ > | Init,Haps0, . . .Hapst−1}

must be the same as those of

ΓD∗

t ∪ {F ⇐ > | Init,Haps0, . . .Hapst−1},

where the sets Init and Hapsi encode the particular initial state and narrative
against which we check constraint. In other words, with this particular initial
state and narrative of events, the inclusion of the nonexecutable law above
would be unnecessary, and would simply lead to unnecessary further checking
for consistency. We can safely omit it.

We have made use of this device of defining a ‘constraint’ predicate with the
Zoo World, and so a preliminary stage of checking for consistency will always
be to make sure that these constraints are satisfied. Given the large number of
constraints we include, it has been useful to use a predicate of arity 1 rather than
0, to enable us to include identifiers for each constraint and so easily see, when
the narrative and action description are inconsistent, what the reason is for the
failure. The entire file zoo constraints.pl is included as part of Appendix B.

We remarked above on the division of the description of each particular Zoo
World domain into general principles and specific facts, the latter including

104 Chapter 3. Efficient Computation of Narratives

information about the initial state and narrative. Let us introduce a sample
filling-out of the Zoo World’s general principles to illustrate how concise our
representations can be. To that end, consider the zoo shown in Figure 3.8.
There are two animals: ahab the human and moby the whale; both are adults.

sdblsdbvlsdbh
g
h

moby ahab ahab moby

moby ahab ahab moby

ahab
moby

ahab
moby

ahab
moby

ahab
moby

open(a, gate)
close(a, gate) open(a, gate)

close(a, gate)

mount(a)=m
get off(a, m)=2 mount(a)=m

get off(a, m)=1

move(m)=2

move(m)=1

null

null

null

null

null

null

null

null

Figure 3.8: A small Zoo World

Humans and whales are large species. The zoo contains two positions, called
1 and 2; in the diagram position 1 is on the left, and 2 is on the right. The
location of position 1 is the cage, and 2 is outside. There is a single gate, called
gate. Where ahab and moby appear shaded in the same position, this indicates
that ahab is mounted on moby. A null label on a transition indicates that all
action constants are evaluated to f over that transition; on other transitions
those action constants are evaluated to f which are not represented.

In conjunction with those causal laws and clauses which are held in common
by all Zoo Worlds, the small domain depicted can be defined by the Prolog
clauses

gate(gate).
cage(cage).
sides(gate,1,2).
loc(1,cage).
loc(2,outside).
animal(ahab,human).
animal(moby,whale).
large_species(human).
large_species(whale).

3.9. The Zoo World 105

We loaded our representation of this small zoo into our implementation for
EC+, and asked it to draw the labelled transition (functionality we mentioned
in Section 3.5). The result was the system depicted in Figure 3.8.

Unfortunately we have not been able to compare the performance of the
EC+, logic-programmed representation of instantiations of the Zoo World with
the C+ version running with CCalc. Whilst the latter works for small examples
satisfactorily, it will not run on larger examples. (The interface to some Prolog
library modules has been implemented incorrectly.)

3.10 Relation to the Event Calculus

We have said, rather loosely, that the logic program

LP (D, t, Init, {Hapsi | 0 6 i 6 t})

represents an ‘event-calculus’ style of computation, or that it is ‘inspired by’ the
event calculus, and readers familiar with any variant of the event calculus—such
as the one given in Section 2.4—will see that this is true. Yet the nature of the
correspondence between the event calculus and EC+ remains unclear. In this
section we will look at the details of the relationship. Since there exist many
different variants of the event calculus, there is no unitary relationship to EC+.
Accordingly, we will choose the variant described in Section 2.4, and investigate
its correspondence to EC+.

Action descriptions of C+ specify the laws according to which a system
evolves; causal laws do not express properties of individual runs of the system,
which is why C+ needs to be supplemented by a query language whose se-
mantics is founded on the labelled transition systems which action descriptions
define. The event calculus programs (Ax, E, Init, N, T) which we described in
Section 2.4, however, do contain information about particular runs through the
system: Init encodes properties of the initial state, and N is the narrative of
events. Thus to relate C+ and EC+ to the event calculus programs we have
defined, we will extract the laws of evolution from the event calculus programs.

Definition 3.11 Let σ be a multi-valued propositional signature, with the
usual partitioning into fluent and action constants. Let Ax be axioms of the
simplified event calculus axioms, partially grounded in ways respecting the sig-
nature σ, but where variables intended to represent time-points are left free.
Let E be a set of clauses of the form

initiates(a=v’, c=v, T) :-
holds_at(c1=v1, T),
...
holds_at(cn=vn, T).

Then (Ax, E) is an event calculus system specification. y

Definition 3.12 Let σ be a multi-valued propositional signature (σ = σf ∪σa)
and (Ax, E) be an event calculus system specification. The action description

106 Chapter 3. Efficient Computation of Narratives

corresponding to (Ax,E), written DAx,E, has signature σ and the causal laws
inertial c, for all c ∈ σf ; exogenous a, for all a ∈ σa; and

caused c=v if > after a=v′ ∧ c1=v1 ∧ · · · ∧ cn=vn,

for all members of E of the form

initiates(a=v’, c=v, T) :-
holds_at(C1=V1, T),
...
holds_at(Cn=Vn, T).

y

Observation 3.13 For any event calculus system specification (Ax, E), DAx,E

is an action description of EC+. y

Herbrand models, and hence stable models, of our event-calculus programs
P will contain the following components:11

• the set Init of initially/1 atoms;

• the narrative N of happens/2 atoms;

• atoms of the predicate holds at/2;

• atoms of the predicate initiates/3;

• atoms of the predicate terminates/3;

• atoms of the predicate broken/3.

We would like to be able to show that stable models of any event calculus pro-
gram P founded on an event calculus system specification (Ax, E) correspond
to stable models of the corresponding program of EC+, as specified in Defi-
nition 3.12. Insisting that the initial states and narratives of simplified event
calculus programs should be ‘consistent’ and ‘complete’ will assist us in showing
this: the correspondence theorem we will prove would not hold in general, for
initial states and narratives which may be inconsistent or incomplete, according
to the sense we gave in Section 2.4.

In fact, it is easier first to show that stable models of (complete, consistent
and acceptable) event calculus programs correspond to runs through the transi-
tion system defined by DAx,E ; the way we do this is by using the property that
runs of length m through the transition system defined by D are essentially
models of ΓD

m—Theorem 2.10. We can then use Theorem 3.10 (that relating
models of the causal theories ΓD

t to stable models of our logic programs for
EC+) to move to the desired result.

11We have not mentioned atoms of the predicates </2, =</2 and \=/2: given the signature
σ and length of narrative m of an event calculus program, the facts of those predicates which
are included in the program are fixed, and we will tacitly assume that any stable model will
include them.

3.10. Relation to the Event Calculus 107

Theorem 3.14 Let (Ax, E) be an event calculus system specification. Then
for all event calculus programs P = (Ax, E, Init, N, T) which are acceptable,
complete and consistent, and for all interpretations X of the signature of P ,

X |=C ΓDAx,E

m ∪ {c[0]=v ⇐ > | initially(c=v) ∈ Init}
∪ {a[i]=v ⇐ > | happens(a=v,i) ∈ N}

if and only if there is a stable model M of (Ax ∪ E ∪ Init ∪N) such that

holds at(c=v,t) ∈M iff X |= c[t]=v

happens(a=v,t) ∈M iff X |= a[t]=v (3.5)

Proof: By induction on the length m of narrative.

(Base case: m = 0.) For the ‘only if’ direction, let X be an interpretation of
the signature σ0 and assume

X |=C ΓDAx,E

0 ∪ {c[0]=v ⇐ > | initially(c=v) ∈ Init}
∪ {c[i]=v ⇐ > | happens(a=v,i) ∈ N}. (3.6)

N is empty for m = 0, so that as there are no static laws in DAx,E , and given
the nature of the translation from C+ to action descriptions to causal theories,
(3.6) reduces to

X |=C {c[0]=v ⇐ > | initially(c=v) ∈ Init}
∪ {c[0]=v ⇐ c[0]=v | c ∈ σf , v ∈ dom(c)}. (3.7)

But then clearly X is just the interpretation of σ0 which assigns v to c iff
initially(c=v) ∈ Init. We must show that there is a stable model M of
(Ax ∪ E ∪ Init ∪ N) with holds at(c=v,0) ∈ M iff initially(c=v) ∈ Init.
This is clearly the case, essentially as no stable model of (Ax∪E∪ Init∪N) can
contain any happens(a=v,i) atom, thus there is no atom broken(c=v,t1,t2)
in M . (The model M may contain initiates/3 and terminates/3 atoms if
there are corresponding clauses in E and the bodies of those laws are true in
M—in this case the variable representing time will be bound to 0. A similar
phenomenon arises with the inductive step.)
For the ‘if’ direction, X again is an interpretation of σ0, and let M be a stable
model of (Ax ∪ E ∪ Init ∪N), for which the relevant biconditionals (3.5) hold.
Recall that the event calculus program must be complete and consistent in the
senses defined in Section 2.4. It is easy to see that

X |=C ΓDAx,E

0 ∪ {c[0]=v ⇐ > | initially(c=v) ∈ Init},

as M must obviously contain an atom holds at(c=v,0) iff it contains an atom
initially(c=v).

(Inductive step: assume true for m = k, show for m = k + 1.) For the ‘only if’
direction, let X be an interpretation of σk+1, and assume

X |=C ΓDAx,E

k+1 ∪ {c[0]=v ⇐ > | initially(c=v) ∈ Init} (3.8)
∪ {a[i]=v ⇐ > | happens(a=v,i) ∈ N}

108 Chapter 3. Efficient Computation of Narratives

We must find a stable model M satisfying the relevant biconditionals. Let N−

be the set formed from N by removing all atoms of the form happens(a=v,k).
So, consider the causal theory

ΓDAx,E

k ∪ {c[0]=v ⇐ > | initially(c=v) ∈ Init} (3.9)

{a[i]=v ⇐ > | happens(a=v,i) ∈ N−}

Clearly

X − ({(c[k + 1], X(c[k + 1])) | c ∈ σf} ∪ {(a[k], X(a[k])) | a ∈ σa})

is an interpretation of the signature σk of this theory (3.9); call this diminished
interpretation X0. By properties of causal theories and their relation to action
descriptions, X0 is a model (in the sense of |=C) of the theory (3.9). Thus by
the inductive hypothesis there exists, corresponding to X0, a stable model M0

of (Ax ∪ E ∪ Init ∪N−). We have that

holds at(c=v,t) ∈M0 iff X0 |= c[t]=v,

happens(a=v,t) ∈M0 iff X0 |= a[t]=v. (3.10)

We extend M0 to a model M of ((Ax∪E∪Init∪N) having the desired property.
So, define

M = M0 ∪ {holds at(c=v,k+1) | X |= c[k + 1]=v}
∪ {happens(a=v,k) | happens(a=v,k) ∈ N}
∪ {initiates(a=v’,c=v,k+1) | there is an initiates/3 clause

clause (as in Def. 3.11) in E, and X |= c1[k + 1]=v1 ∧ · · ·
· · · ∧ cn[k + 1]=vn}

∪ {terminates(a=v’,c=v,k+1) | there is an initiates/3 clause
clause (as in Def. 3.11) in E whose head is
initiates(a=v’,c=v’’,T), X |= c1[k + 1]=v1 ∧ · · ·
· · · ∧ cn[k + 1]=vn, v′′ ∈ dom(c), v′′ 6= v′}

∪ {broken(c=v,t1,k) | there is an initiates/3 clause
clause (as in Def. 3.11) in E whose head is
initiates(a=v’,c=v’’,T), X |= c1[k]=v1 ∧ · · ·
· · · ∧ cn[k]=vn, v′′ ∈ dom(c), v′′ 6= v′,

happens(a=v’,k) ∈ N, for all (0 6 t1 6 k)}

M extends the narrative of M0 in ways respecting the laws which govern the
dynamic behaviour of the system, and adds appropriate atoms of initiates/3,
terminates/3 and broken/3. As M clearly has the properties (3.5), it remains
to show that M is a stable model of (Ax ∪ E ∪ Init ∪ N). That proceeds by a
simple, if lengthy, case analysis.
For the ‘if’ direction, let X be an interpretation of σk+1, and assume that M is a
stable model of (Ax∪E∪Init∪N), such that the biconditional properties obtain.
We must show that statement (3.8) holds. So, restrict M to a Herbrand model
M0 by removing all atoms of the form holds at(c=v,k+1), happens(a=v,k),
initiates(a=v’,c=v,k+1), terminates(a=v’,c=v,k+1), and also the atoms

3.10. Relation to the Event Calculus 109

broken(c=v,t,k) (for any t), from M . Then, using the same notation N−

as for the ‘only if’ part, M0 is a stable model of (Ax, E, Init, N−), and so X0

(defined as previously), which is an interpretation of σk, is a model of

ΓDAx,E

k ∪ {c[0]=v ⇐ > | initially(c=v) ∈ Init}
∪ {a[i]=v ⇐ > | happens(a=v,i) ∈ N−};

henceforth we will call this causal theory Γk. Now, the causal rules which are
added when moving from Γk to

ΓDAx,E

k+1 ∪ {c[0]=v ⇐ > | initially(c=v) ∈ Init}
∪ {a[i]=v ⇐ > | happens(a=v,i) ∈ N}

(we will abbreviate this as Γ) are the following:

• c[k + 1]=v ⇐ c[k + 1]=v ∧ c[k]=v, for c ∈ σf , v ∈ dom(c) (these express
inertia);

• a[k]=v ⇐ a[k]=v, for all a ∈ σa, v ∈ dom(a) (these express the exogeneity
of actions at the last time step);

• c[k + 1]=v ⇐ a[k]=v′ ∧ c1[k]=v1 ∧ · · · ∧ cn[k]=vn such that there is an
initiates/3 clause of the usual form in E;

• a[k]=v ⇐ > for all happens(a=v,k) ∈ N .

Now, we will consider the members of σk+1 − σk in turn, showing that for each
constant c in that set there is a unique atom present in the reduct (Γ)X (recall
Section 2.1.3).
So, first suppose c ∈ σf . There are two possibilities: either the value of c changes
between times k and k +1, or it remains the same. Thus if holds at(c=v,k) ∈
M and holds at(c=v’,k+1) ∈ M for some v′ 6= v, then this must be as a
consequence of the presence of some clause

initiates(a=v’’,c=v’, T) :-
holds_at(c1=v1, T),...,holds_at(cn=vn, T).

in E, with holds at(c1=v1,k), . . . , holds at(cn=vn,k) ∈ M0 ⊆ M and also
happens(a=v’’,k) ∈ M . But then X |= c1[k]=v1 ∧ · · · ∧ cn[k]=vn and X |=
a[k]=v′′ so that as

c[k + 1]=v′ ⇐ a[k]=v′′ ∧ c1[k]=v1 ∧ · · · ∧ cn[k]=vn,

we have c[k+1]=v′ ∈ (Γ)X . There can be no other c[k+1]=v∗ ∈ (Γ)X : certainly
not from the ‘inertial’ rules, but neither any rule of the form

c[k + 1]=v∗ ⇐ a′[k]=v′′′ ∧ c′1[k]=v′1 ∧ · · · ∧ c′n[k]=v′n

whose body is satisfied by X. For if there were such a rule, then a corresponding
atom initiates(a’=v’’’,c=v*,k) would be in M , whose presence would also
require an atom broken(c=v’,0,k+1) (the second argument has been chosen
arbitrarily; it makes no difference), and thus given the structure of the axiom
describing the effects of actions in event calculus programs, we could not have

110 Chapter 3. Efficient Computation of Narratives

holds at(c=v’,k+1) ∈M .
Thus, to recap: if holds at(c=v,k) ∈ M and holds at(c=v’,k+1) ∈ M for
some v′ 6= v, then there is precisely one atom whose constant is c[k+1] in (Γ)X ,
and that atom is c[k + 1]=v′.
Suppose alternately that the value of c remains the same as the system passes to
time k + 1. In that case, we have holds at(c=v,k), holds at(c=v,k+1) ∈M ,
then an analysis similar to that above shows that there is a unique atom in (Γ)X

whose constant is c[k + 1], and that the atom in question is c[k + 1]=v.
Finally, if a ∈ σa, then as N is consistent and complete, there is precisely one
rule in

{a[i]=v ⇐ > | happens(a=v,i) ∈ N}

with a[k] in its head. As the only other rules in Γ with an atom whose constant
is a[k] as their head also have that atom as their body (the rules are those stem-
ming from the universal exogeniety of action in our action descriptions), then for
each constant a[k] with a ∈ σa, (Γ)X contains precisely one atom: that a[k]=v
such that happens(a=v,k) ∈ N (and therefor also such that X |= a[k]=v.
Now, we have that (Γ)X = (Γk)X ∪ (Γ − Γk)X by Observation 2 of [SC05b].
The subset (Γk)X , which is the same as (Γk)X0 , uniquely determines the inter-
pretation of the constants in σk, in line with X0. The subset (Γ − Γk)X , as is
obvious from the case analysis above, uniquely determines the interpretation of
the constants in σ − σk, in line with X −X0. Thus

X |=C ΓDAx,E

k+1 ∪ {c[0]=v ⇐ > | initially(c=v) ∈ Init}
∪ {a[i]=v ⇐ > | happens(a=v,i) ∈ N}

by induction, as desired.
This concludes the inductive step, and so we have our result for all m, by
induction. y

Theorem 3.15 Let (Ax, E) be an event calculus system specification. The
sequence (s0, e0, s1, e1, . . . , sm) is a run through the transition system defined
by DAx,E iff there exists a stable model M of (Ax, E, Init, N, {0, . . . ,m}) such
that

• c=v ∈ st iff holds at(c=v,t) ∈M , and

• a=v ∈ et iff happens(a=v,t) ∈ N ,

(where s0 = {c=v | initially(c=v) ∈ Init} and for all i such that 0 6 i < m,
a=v ∈ ei iff happens(a=v,t) ∈ N).

Proof: This is a straightforward corollary of Theorem 3.14, together with rel-
evant definitions from Section 2.1.4. y

Theorem 3.16 Let (Ax, E) be an event calculus system specification and P =
(Ax, E, Init, N, {0, . . . ,m}) a simplified event calculus program based on (Ax, E).
Let M be a Herbrand model of P such that for all t with 0 6 t 6 m, M
contains precisely one atom holds at(c=v,t). Then M is a stable model of
Ax∪E∪ Init∪N iff there is a stable model MP of LP (DAx,E ,m, Init∗, N), such
that:

• holds at(c=v,t) ∈M iff caused(c=v,t) ∈MP ;

3.10. Relation to the Event Calculus 111

• happens(a=v,t) ∈M iff happens(a=v,t) ∈MP .

Proof: For the ‘only if’ direction, first assume that M is as described, and is a
stable model of the program Ax∪E ∪ Init∪N . As the narrative N is complete
and consistent, then the function X : σk →

⋃
c∈σk

dom(c) defined as

{(c[t], v) | (c ∈ σf ∧ v ∈ dom(c) ∧ 0 6 t 6 m ∧ holds at(c=v,t) ∈M)
∨ (c ∈ σa ∧ v ∈ dom(c) ∧ 0 6 t < m ∧ happens(c=v,t) ∈M)}

is an interpretation of σk. So by Theorem 3.14, we have

X |=C ΓDAx,E

m ∪ {c[0]=v ⇐ > | initially(c=v) ∈ Init}
∪ {a[i]=v ⇐ > | happens(a=v,i) ∈ N}.

Using Theorem 3.10, we have a stable model MP of LP (DAx,E ,m, Init∗, N),
with the desired properties.
The ‘if’ part of the proof moves similarly, but in the opposite direction. y

These theorems relating stable models of EC+, runs through the transi-
tion system defined by action descriptions, models of causal theories and stable
models of simplified event calculus programs are only one part of the work of re-
lating the event calculus to C+ and EC+. In particular, and as we have already
stressed, only one of the many variants of the event calculus has been chosen,
as a representative of that family of formalisms.

3.11 Summary

In this chapter we have presented an alternative means of working with action
descriptions of C+, one that is much more efficient and, we believe, scalable,
then that currently in use. Our logic-programmed algorithm takes its inspiration
from the Event Calculus, and a working implementation already exists.

We first restricted C+ to EC+. This involved placing constraints on the in-
teraction between defaults and inertia in action descriptions, prohibiting action
dynamic laws beyond blanket exogeneity for action constants, and imposing
a condition that, apart from defaults, fluent constants should not depend on
themselves, in a sense we defined. We gave an account of how signatures, action
descriptions, initial states and narratives are represented in our logic programs,
and described in detail the rationale behind the axioms we introduce which en-
able us to reason about narratives. A substantial proof of equivalence was pro-
vided, showing that stable models of our programs correspond to runs through
the transition system defined according to the semantics of C+. We discussed
details of our implementation and the process of checking that the initial state
and narrative of actions are consistent, in a sense we explicated, with the action
description. Several examples were given, including one standard problem do-
main discussed in the literature. We gave a systematic comparison of our logic
programs to one variant of the event calculus, and also discussed modifications
of our implementation designed to avoid the recomputation of answers, based
on tabling.

112 Chapter 3. Efficient Computation of Narratives

There is another way of conceiving of our work here. We have presented
it as a more efficient engine for (a subset of) C+, but the fact that the Event
Calculus was taken as the blueprint of how the program should work, suggests
that we can see EC+ modern version of one variant of the Event Calculus—
and significantly, one which has a very useful semantics of labelled transition
systems firmly in place. The two ways of viewing this work gave rise to the
overdetermined acronym which is its name: EC+ is the Event Calculus +, or
Efficient Computation for C+.

Chapter 4

Distant Causation

4.1 Preliminaries

A limitation of C+ as it currently stands is that when writing causal laws one
must refer only to states at most one time-step away from each other. It is
also impossible directly to say that the performance of an action causes the
performance of another action at the next time-step, or at some other time in
the future. Yet the fact that an action description of C+ can be viewed as
shorthand for an infinite sequence of causal theories (a sequence indexed by the
natural numbers), as described in [GLL+04] and rehearsed in Section 2.1.3 of
this thesis, together with the fact that there is no limitation on the times to
which the rules of those causal theories refer, suggests that one may expand C+,
removing the restriction on temporal distance.

There will be benefits. Currently, encoding domains in C+ in which delays
and deadlines play an important role is awkward at best and computationally
expensive at worst. For example, suppose one wanted to say that 20 time-
steps after a set action, a switch turned to red. The signature would at least
contain the fluent constant switch, with dom(switch) = {green, red}, and an
action constant set, with a boolean domain. But how are the causal laws to be
written? One might think of something along the following lines:

inertial switch, timer=1 if > after set,

exogenous set, timer=2 if > after timer=1,

default timer=none, timer=3 if > after timer=2,

...
timer=20 if > after timer=19,

switch=red if timer=20.

But this do only for one interpretation of the specification. For what if one
time-step after the set action, another set action is performed? Let us suppose
that the idea is, not to reset the timer so that countdown begins anew, but
rather to ensure that the switch is red at another time, one step after that
triggered by the initial set action. It seems obvious that one will need a whole
series of timeri constants, governed by a series of laws which decides when each

113

114 Chapter 4. Distant Causation

of them is to be started, along the following lines:

inertial switch,

exogenous a,

timer1=1 if > after set ∧ timer1=none,

timer1=2 if > after timer1=1,

...
timer1=20 if > after timer1=19,

switch=red if timer1=20,

default timer1=none,

timer2=1 if > after set ∧ ¬timer1=none ∧ timer2=none,

timer2=2 if > after timer2=2,

...
switch=red if timer2=20,

default timer2=none,

timer3=1 if > after set ∧ ¬timer1=none ∧ ¬timer2=none

∧ timer3=none,

timer21=1 if > after set ∧ ¬timer1=none ∧ · · · ∧ ¬timer20=none

∧ timer21=none,

default timer21=none

That will now give the results we wanted. But it is hardly a perspicuous repre-
sentation of the behaviour of the system, and though one might invent macros
to generate such causal laws, there will clearly be a computational penalty to
pay in the implicit causal theories with which CCalc, for example, operates.

This chapter presents a solution. (An earlier version of the work presented
in this chapter was published as [CS05].)

4.2 Times

One could change the syntax of C+ as it stands in the following way. Let λ
be conceived of as an operator which enables one to refer to the immediately
preceding state. Fluent dynamic laws can then be written as

F if G ∧ λ(H);

both action dynamic laws and static laws will be written in the form

F if G,

which is the same as for C+.
We will allow ourselves to nest the λ. In this extended language, signatures

are defined as before for C+, and causal laws have the form

F if G,

4.2. Times 115

where F is as before a formula of the signature, and G is given by

G ::= c=v | > | ¬G | G1 ∧G2 | G1 ∨G2 | λ(G). (4.1)

We can write λλ(F) as λ2(F), and so on. We insist that if the left-hand side of a
causal law contains a fluent constant, then no action constant should appear on
the right-hand side outside the scope of any λ. Also, we stipulate that if there
is a λ with index greater than 0 on the right-hand side of a law, then that law’s
left-hand side must not contain statically defined fluents. These restrictions are
essentially inherited from those in C+ pertaining to action dynamic laws and
statically determined fluents.

It is easy to show that causal rules defined as above have the following
canonical form:

F if λn0(G0) ∧ · · · ∧ λnk(Gk), (4.2)

where G0, . . . , Gn are formulas of σf ∪ σa (i.e., formulas containing no λ), and

• k > 0;

• (n0, . . . , nk) is a strictly increasing sequence of non-negative integers;

• if F contains fluent constants and n0 = 0, then G0 contains no action
constants;

• if F contains statically determined fluent constants, then there is no λ-
index greater than 0 on the right-hand side.

We have been calling the n0, . . . , nk λ-indices; we say that a law (4.2) has a
greatest λ-index of nk. We also allow ourselves to drop any operator λ0, and
to remove any λ-index of 1 from a causal law. An action description is a set of
causal laws. This extension of C+ is called C+timed.

To every action description D (signature σf ∪ σa) and non-negative integer
t there corresponds a causal theory ΓD

t . The signatures of these causal theories
are defined in the same way as for C+. The causal laws of ΓD

t are

F [i + nk]⇐ G0[i + (nk − n0)] ∧ · · · ∧Gk[i + (nk − nk)],

or more briefly,

F [i + nk]⇐
k∧

j=0

Gj [i + (nk − nj)],

for every causal law in D and every

• i ∈ {0, . . . , t− nk − 1}, if F contains an action constant,

• i ∈ {0, . . . , t− nk}, otherwise;

we also include
c[0]=v ⇐ c[0]=v,

for every simple fluent constant c and v ∈ dom(c). So much for the language
definition and translation into the language of causal theories. We allow our-
selves to use the syntax and abbreviations of C+ laws (those in Section 2.1.6)
in obvious ways: so that

F if G after H

116 Chapter 4. Distant Causation

ought to be understood as meaning

F if G ∧ λ(H),

and so forth.
For the purpose of illustration, consider the following simple domain DS,

with Boolean signature σf = {p} (p is simple) and σa = {a}. The causal laws
are:

inertial p,

exogenous a

p if λ2(a),

where the following abbreviation holds, as in C+:

inertial c 7→ c=v if c=v ∧ λ(c=v), for all v ∈ dom(c), (c ∈ σf)
exogenous a 7→ a=v if a=v, for all v ∈ dom(c), (a ∈ σa)

For time-index 2, the causal theory determined by the action description DS
is:

a[0]=t ⇐ a[0]=t, p[1]=t ⇐ p[1]=t ∧ p[0]=t,

a[0]=f ⇐ a[0]=f , p[1]=f ⇐ p[1]=f ∧ p[0]=f ,

a[1]=t ⇐ a[1]=t, p[2]=t ⇐ p[2]=t ∧ p[1]=t,

a[1]=f ⇐ a[1]=f , p[2]=f ⇐ p[2]=f ∧ p[1]=f .

p[2]=t ⇐ a[0]=t,

p[0]=t ⇐ p[0]=t,

p[0]=f ⇐ p[0]=f ,

One may then find the models of this theory using the ‘literal completion’
method, as described in Section 2.1.5; CCalc can do this for us. A sample
model of ΓDS

2 is shown in Figure 4.1. It is straightforward to adapt CCalc to

¬p ¬p pa ¬a

Figure 4.1: A model of ΓDS
2

accept inputs of action descriptions written in the extended language of C+timed,
and to effect the translation into causal theories as described above.

4.3 Graphical Models

4.3.1 Run Systems

It remains to decide what to do about the transition systems which were the
original semantics for C+. For whilst one could understand C+timed simply as a

4.3. Graphical Models 117

means of writing in abbreviated form a family of causal theories, a very attrac-
tive feature of C+ is that action descriptions can be shown to define labelled
transition systems. These transition systems may afford a useful connection
between C+ and other formalisms for reasoning about actions, and of course
they are useful in their own right as aids to visualization. If we look at the
transition systems defined by C+timed theories, however, we see that important
information is lacking.

Recall the means of calculating the transition system for an action descrip-
tion of C+ described in Section 2.1.4. If we apply the definitions given there
(specifically, Definition 2.6, which defines states and transitions in terms of mod-
els of ΓD

0 and ΓD
1) to action descriptions of C+timed, and calculate the transition

system for the domain DS, the result is as shown in Figure 4.2. However, that

¬pp

a

¬a

a

¬a

Figure 4.2: The (flawed) C+-style transition system for C+timed domain DS

is clearly flawed, for the run of the system depicted in Figure 4.1 cannot be
traced in the diagram. The reason for the failure is clear: the causal theory
ΓD

1 used to find the transitions has not taken into account the law p if λ2(a) of
our action description. In general, the theorem correlating paths through the
transition system with models of causal theories (Theorem 2.10) does not hold
for C+timed.

Accordingly, we broaden our conception and define a kind of transition sys-
tem called a run system. These are different from the subclass of transition
systems defined by C+ action descriptions, in two respects. First, states (under-
stood as models of ΓD

0) may be represented by more than one vertex. Secondly,
out of each set of vertices which represent the same state, a privileged initial
vertex will be marked.

Definition 4.1 A (labelled) run system of a signature σf ∪ σa is any graph G
with vertices V (G) and edges E(G), such that:

• V (G) ⊆ I(σf)× N,

• E(G) ⊆ V (G)× I(σa)× V (G).

Any (s, 0) ∈ V (G) is called an initial vertex. y

In contrast with the transition systems defined by C+ action descriptions, ver-
tices are pairs of states and natural numbers (the use of N here is arbitrary, and
is simply a means of allowing more than one vertex to be associated with a given
state). Where (s, n) is a vertex of a run system, we call s the state component,
and if ((s, n), e, (s′, n′)) is an edge of a run system, then we call (s, e, s′) the
transition component.

118 Chapter 4. Distant Causation

Definition 4.2 A labelled run system G is said to represent an action descrip-
tion D of C+timed (with signature σ) when, for all integral t with t > 0

s0[0] ∪ e0[0] ∪ s1[1] ∪ · · · ∪ et−1[t− 1] ∪ st[t]

(where the si ∈ I(σf) and the ei ∈ I(σa)) is a model of ΓD
t iff there is a path

((s0, 0), e0, (s1, n1), . . . , et−1, (st, nt))

through G. y

For any action description of C+timed there clearly exists at least one run system
representing it. (Consider trees whose roots are the initial vertices, and where
paths of length t correspond one-to-one with models of ΓD

t .)
In diagrams, we will represent the initial states by circling them twice, and

we will not include the n component of our vertices (s, n). As an illustration
of what we are working towards, a run system for the domain DS is shown in
Figure 4.3. It can clearly be seen that paths through this run system beginning

¬pp

¬p

¬a ¬a

a

a
a

¬a

Figure 4.3: Run system for the simple action description DS

at one of the twice-circled vertices correspond to models of the causal theories
generated by DS.

We now introduce the notion of a ‘commitment’, which will be of central
importance in the generation of run systems from action descriptions of C+timed.

4.3.2 Commitments

The idea is that as a system makes runs, it may accrue commitments, which
express that something should be true in the future, if certain other things are
true. (Thus we use ‘commitment’ here as a technical term, unrelated to the
concept encountered in, for example, multi-agent systems.) Commitments have
the same syntax as causal rules, to which they have a very close relationship.

Figure 4.4 represents a model of the causal theory ΓDS
2 (the same model

shown in Figure 4.1). That model, as we know, can be partitioned into

s0[0] ∪ e0[0] ∪ · · · ∪ s2[2]

and in our diagram the vertices are the si, and the edges (si, ei, si+1). To the
right of each vertex, a set of commitments has been drawn. These commitments

4.3. Graphical Models 119

¬p

¬p

p

a

a

{ p[2]⇐ a[0]) }

{ p[2]⇐ 0[a]
p[1]⇐ > }

{ p[2]⇐ a[0]
p[1]⇐ > }

Figure 4.4: A model of ΓDS
2 , marked with commitments

stem from the law p if λ2(a) in the action description DS. The first thing
to notice is that vertices which encode the same interpretation of σf may be
labelled by different sets of commitments: this is true of the first and second
vertices in the diagram. From this flows the fact that in the run system depicted
in Figure 4.3, there are two vertices which are labelled with ¬p.

In commitments, the time-stamp is to be understood as relative to the cur-
rent state—i.e., relative to the one which is labelled by the commitment. Thus
the fact that the second vertex in our diagram is labelled by the commitment
p[2]⇐ a[0] means that if a is performed at the outgoing edge, then 2 time-steps
into the future, p must be true.

Starting at the top and moving down through the diagram, we see that if a is
performed on the outgoing edge of the first state, p must be true two time-steps
later. At the next state this is also true; further, since a was performed between
states one and two, p is now definitely constrained to be true at the third state.
The third state itself is labelled by the same commitments as the second, and
so on.

In general, there are two ways in which in which a state in such a diagram
may come to be labelled by a commitment: because of the nature of the state
itself, and because a commitment has been inherited from a previous state.

Consider a model of some causal theory ΓD
t . If a state sj of that model is

labelled with the commitment

F [n]⇐ G0[n0] ∧ · · · ∧Gk[nk]

(where here n > n0), then this should be taken to mean that if

sj+nk
∪ ej+nk

|= Gk,

...
sj+n0 ∪ ej+n0 |= G0,

then we must have sj+n ∪ ej+n |= F .

120 Chapter 4. Distant Causation

We define a function from commitments to sets of commitments, which will
be used in specifying how these commitments change from one state to another.
Let x be the commitment

F [n]⇐ G0[n0] ∧ · · · ∧Gk[nk].

The value of cmt(x) will be

{ F [n− 1]⇐ G0[n0 − 1] ∧ · · · ∧Gk[nk − 1] }

if n − 1 > 0, or if n − 1 = 0 and F is an action atom; we omit any conjuncts
of the right-hand side which have time-stamps less than 0. Otherwise, the
value of cmt(x) is the empty set. Thus the function cmt has as its domain the
set of commitments of some signature, and has as its range the set containing
singletons of commitments, together with the empty set. As an example, we
refer back to the domain DS:

cmt(p[2]⇐ a[0]) = {p[1]⇐ >},
cmt(p[1]⇐ >) = ∅,

By convention, if S is a set of commitments, we set

cmt(S) =
⋃
x∈S

cmt(x).

4.3.3 Generation of Run Systems

Let D be an action description of C+timed, with signature σf ∪ σa. Assume the
laws of D are in canonical form, and so have the structure

F if λn0(G0) ∧ · · · ∧ λnk(Gk) (4.3)

for some sequence of natural numbers (n0, . . . , nk). Let D ⊆ D be the set of
all those laws of D which have a maximum λ-index greater than 1, or else have
this index equal to 1 and an action atom as F . Thus D contains those laws of
D which could not be expressed in C+, and D−D is, despite its odd syntax, a
C+ action description (with the same signature).

Let init be the set
{s ∈ I(σf) | s[0] |=C ΓD

0 }.

init can be seen as being the set of states (a notion inherited from C+) of our
system, the possible left-hand parts of the pairs which are the vertices of our
run systems. Let the set comD contain those commitments

F [nk]⇐ G0[nk − n0] ∧ · · · ∧Gk[nk − nk]

such that there is a law of form (4.3) in D (the last conjunct here is of course
simply Gk[0]).

Run systems, it will be recalled, have as their vertices pairs consisting of a
state (a member of init)and a natural number. Before systems of this kind can
be generated, we use sets of commitments as the second components. So, we

4.3. Graphical Models 121

make a graph GD, which has as its set of vertices those pairs (s, c), where s is
as usual an interpretation of σf , and where c is such that

comD ⊆ c ⊆
⋃
n>0

cmtn(comD).

The set
⋃

n>0 cmtn(comD) includes all commitments which could label any state.
For the edges, we need to introduce a function which will model how commit-

ments change over time as a consequence of the preceding state of, and actions
performed in, a transition. We know that all commitments which can label a
state are contained in ⋃

n>0

cmtn(comD);

commitments in general have the form

F [n]⇐ G0[n0] ∧ · · · ∧Gk[nk].

The function introduced is transcom, which has the domain I(σf) × I(σa) ×⋃
n>0 cmtn(comD), where, if z is a commitment:

transcom(s, e, z) =
{
∅ if nj = 0 and s ∪ e 6|= Gj

cmt(z) otherwise.

Clearly, we want commitments to persist (time-stamps decremented) through a
transition, only when those formulas on the right-hand side of the commitment
which relate to the transition are satisfied. In our example we have that

transcom({¬p}, {a}, p[2]⇐ a[0]) = cmt(p[2]⇐ a[0]),
= {p[1]⇐ >}.

Thus we ensure the presence of the right commitments. By convention, where
c is a set of commitments, we let

transcom(s, e, c) =def

⋃
z∈c

transcom(s, e, z).

In order to ensure that the transition components (s, e, s′) of our graph respect
the commitments which relate to them, we have include those commitments in
the conditions which define the edges. So, we insist that the vertices of our
graphs G of the form ((s, c), e, (s′, c′)) must have

s[0] ∪ e[0] ∪ s′[1] |=C ΓD
1 ∪ c∗,

where c∗ includes those members of c all of whose constants are members of σ1.

Definition 4.3 Let D be an action description of C+timed, with signature σ.
The preliminary run system GD defined by D is the graph whose vertices V (GD)
are the pairs (s, c) such that

• s ∈ I(σf) and s[0] |=C ΓD
0 ; and

• comD ⊆ c ⊆
⋃
n>0

cmtn(comD).

122 Chapter 4. Distant Causation

The edges E(GD) of the graph are those triples ((s, c), e, (s′, c′)) such that

• (s, c), (s′, c′) ∈ V (GD);

• c′ = comD ∪ transcom(s, e, c);

• s[0]∪ e[0]∪ s′[1] |=C ΓD
1 ∪ c∗, where c∗ is the result of removing from c any

commitments which employ a constant not in the signature σ1. y

To obtain a run system for D from a preliminary run system, all that remains is
to rename the second components of the vertices: to do this, we simply have to
make a suitable correspondence between sets of commitments and non-negative
integers, such that the set comD corresponds to 0. This can easily be done. Once
the renaming of vertices and edges has been effected, we obtain G∗

D, which is a
run system representing D in the sense introduced in Definitions 4.1 and 4.2.

A transition system T , of the type defined by a C+ action description, is
essentially a run system in which there are only initial states, so that V (T) =
{(s, 0) ∈ V (T)}.

It remains, of course, to prove that this method of generating run systems
works. The desired result states that given an action description D of C+timed,
paths through the system G∗

D of length t which begin at an initial vertex (s, 0)
correspond to models of the causal theory ΓD

t . In other words, we need to show
that G∗

D represents the domain D.

Theorem 4.4 Let D be an action description of C+timed with signature σf∪σa,
and t a non-negative integer. Then, where s0, . . . , st are interpretations of σf ,
and e0, . . . , et−1 interpretations of σa, we have that

s0[0] ∪ e0[0] ∪ · · · ∪ st[t]

is a model of ΓD
t iff

((s0, 0), e0, (s1, n1), . . . , et−1, (st, nt))

is a path through G∗
D, for some n1, . . . , nt ∈ N.

Proof: Given the way that G∗
D is derived from GD, we can show our theorem

holds by proving that

s0[0] ∪ e0[0] ∪ · · · ∪ st[t] |=C ΓD
t

iff
((s0, comD), e0, (s1, c1), . . . , et−1, (st, ct))

is a path through GD. This we do by induction on the length t of run.

(Base case: t = 0.) Assume that s0[0] |=C ΓD
t ; then clearly (s0, comD) ∈ V (GD)

by the definition of the vertices of GD. Alternately, if ((s0, comD)) is a path
through GD, then we must have s0[0] |=C ΓD

0 .

(Inductive step: assume true for t = k, show for t = k + 1.) We assume the
result for t = k. Then, for the ‘only if’ direction of the bi-implication, assume
further that

s0[0] ∪ e0[0] ∪ · · · ∪ sk[k] ∪ ek[k] ∪ sk+1[k + 1] |=C ΓD
k+1.

4.3. Graphical Models 123

We will abbreviate this model of ΓD
k+1 by Ik+1, and we will abbreviate the

restriction of Ik+1 to σk by Ik. Now clearly the causal theory ΓD
k+1 can be

thought of as divided into two parts: ΓD
k , all of whose constants are contained

in the signature σk, and (ΓD
k+1 − ΓD

k), whose constants are in σk+1, but the
heads of whose rules contain no constant not in (σk+1 − σk). By assumption,
Ik+1 |=C ΓD

k+1, which means that Ik+1 is the unique model of (ΓD
k+1)

Ik+1
. Now

by Observation 2 of [SC05a],

(ΓD
k+1)

Ik+1
= (ΓD

k+1 − ΓD
k)Ik+1

∪ (ΓD
k)Ik+1

= (ΓD
k+1 − ΓD

k)Ik+1
∪ (ΓD

k)Ik

.

(The second line follows from the considerations above about the constants in
rules of ΓD

k .) The set (ΓD
k+1−ΓD

k)Ik+1
contains only constants from (σk+1−σk)

and therefore this alone must determine Ik+1 − Ik as its unique interpretation;
similarly, (ΓD

k)Ik

contains only constants in σk, and this must determine Ik as
its unique interpretation. From the latter we immediately conclude that

s0[0] ∪ e0[0] ∪ · · · ∪ sk[k] |=C ΓD
k ,

and thus by the inductive hypothesis we have that

((s0, comD), e0, (s1, c1), . . . , ek−1, (sk, ck))

is a run through GD. It remains to show that this run can be extended to one
of the right form, by adding (ek, (sk+1, ck+1)) (for an appropriate ck+1) to the
end. It is clear which set of commitments we need, and so we define

ck+1 = comD ∪ transcom(sk, ek, ck).

We now must show that ((sk, ck), ek, (sk+1, ck+1)) is an edge of GD. First, for
it to be true that (sk+1, ck+1) ∈ V (GD), we need that sk+1[0] |=C ΓD

0 and that

comD ⊆ ck+1 ⊆
⋃
n>0

cmtn(comD).

The latter is immediate from the definition of ck+1. A straightforward extension
of Proposition 7 from [GLL+04] shows that sk+1 is a ‘state’ in the sense of C+,
i.e. that sk+1[0] |=C ΓD

0 . Thus (sk+1, ck+1) ∈ V (GD). In order to prove that the
triple ((sk, ck), ek, (sk+1, ck+1)) is an edge, we have to show that

sk[0] ∪ ek[0] ∪ sk+1[1] |=C ΓD
1 ∪ c∗k,

where c∗k is the result of removing from ck any commitments which employ a
constant not in σ1. Let I denote

sk[0] ∪ ek[0] ∪ sk+1[1],

We have to show that the unique interpretation satisfying (ΓD
1 ∪c∗k)I is I. Clearly

the interpretation of the simple fluent constants of the form c[i] is uniquely
determined in (ΓD

1 ∪ c∗k)I : the presence of the rules

c[0]=v ⇐ c[0]=v

124 Chapter 4. Distant Causation

which flows from the exogeneity of the initial state of runs implies that. And
there can be no rule

F [0]⇐ X

in ΓD
1 ∪c∗k whose body is true in I but whose head is false, where F contains fluent

constants: if such a rule stemmed from a static law of D, then we would have a
rule F [k] ⇐ X[+k] in ΓD

k+1, with Ik+1 |= X[+k] ∧ ¬F [k], which is impossible.
On the other hand, if the rule F [0]⇐ X were in c∗k, then given how the set ck is
constructed, there would be a rule F [k]⇐ X ′ in ΓD

k+1, whose body was true and
whose head was false in Ik+1, which again, is impossible. So (ΓD

1 ∪c∗k)I uniquely
determines the interpretation of the simple fluent constants c[0], in accordance
with I itself. Similar argumentation shows that the interpretation of the other
members of σ1 is uniquely determined, in line with sk[0] ∪ ek[0] ∪ sk+1[1], and
thus that this interpretation is a model of ΓD

1 ∪ c∗k. In fact, it is not difficult to
see that ((ΓD

1 ∪ c∗k)I)[+k] and that portion of (ΓD
k+1)

Ik+1
which has constants

c[k] or c[k +1] must contain the same formulas, apart from those which stem in
(ΓD

k+1)
Ik+1

from the presence of regular fluent dynamic laws and which govern
the transition (sk−1, ek−1, sk). But the formulas which stem from the rules
derived from these laws can only contain simple fluent constants c[k], and these
constants, as has been argued above, are uniquely determined in (ΓD

1 ∪ c∗k)I

thanks to the rules
c[0]=v ⇐ c[0]=v.

So, we must have that the triple ((sk, ck), ek, (sk+1, ck+1)) is an edge of the
graph GD, which is what we needed to show. So we have that

((s0, comD), e0, . . . , (sk, ck), ek, (sk+1, ck+1))

is a path through GD.
For the ‘if’ part, assume that

((s0, comD), e0, (s1, c1), . . . , ek, (sk+1, ck+1))

is a run through GD. Then so is

((s0, comD), e0, (s1, c1), . . . , ek−1, (sk, ck)),

and so by the induction hypothesis we have

s0[0] ∪ e0[0] ∪ · · · ∪ sk[k] |=C ΓD
k .

As ((sk, ck), ek, (sk+1, ck+1)) is an edge of the graph GD, we also have, by defi-
nition, that

• ck+1 = comD ∪ transcom(sk, ek, ck) and

• sk[0] ∪ ek[0] ∪ sk+1[1] |=C ΓD
1 ∪ c∗k.

By an argument which is essentially the reverse of that used for the ‘only if’
part of this proof, we can show that Ik+1 (using terminology we introduced in
the first part of the proof) is a model of ΓD

k+1. That concludes the ‘if’ part.
And so, on the assumption that the bi-implication holds for t = k, we have
shown it for t = k + 1. By induction we conclude that it holds for all t > 0. y

4.3. Graphical Models 125

4.3.4 An Example Generation

Let us work through the simple action description DS of C+timed, in order to
illustrate the procedures described above. The domain is Boolean, has signature
σf ∪ σa, and contains the laws

inertial p,

exogenous a,

p if λ2(a).

Thus we have DS = {p if λ2(a)}.
The causal theory ΓDS

0 is evidently

p⇐ p,

¬p⇐ ¬p,

so that the set init contains the two states

{p} and {¬p}.

We also have comDS as the singleton containing the commitment p[2] ⇐ a[0].
As was noted previously, we have

cmt(p[2]⇐ a[0]) = {p[1]⇐ >},
cmt(p[1]⇐ >) = ∅,

so that ⋃
n>0

cmtn(comDS) = {p[2]⇐ a[0], p[1]⇐ >}.

We now make the graph GDS . The vertices of GDS are the pairings of
members of init with those subsets of

⋃
n>0 cmtn(comDS) which also contain

comDS , namely:

({p},{p[2]⇐ a[0]}),
({p},{p[2]⇐ a[0], p[1]⇐ >}),

({¬p},{p[2]⇐ a[0]}),
({¬p},{p[2]⇐ a[0], p[1]⇐ >}),

To find the edges for our graph, we first need the causal theory ΓDS
1 . This has

the laws:

p[1]⇐ p[1] ∧ p[0],
¬p[1]⇐ ¬p[1] ∧ ¬p[0],
a[0]⇐ a[0],
¬a[0]⇐ ¬a[0],

p[0]⇐ p[0],
¬p[0]⇐ ¬p[0].

126 Chapter 4. Distant Causation

¬p

p

p

¬p

a

¬a

¬a

a

a

¬a

¬a

a

{p[2] ⇐ a[0],
p[1] ⇐ >}

{p[2] ⇐ a[0]}

{p[2] ⇐ a[0],
p[1] ⇐ >}

{p[2] ⇐ a[0]}

Figure 4.5: The graph GDS , with states and associated commitments

The triples ((s, c), e, (s′, c′)) which satisfy the constraints (given in the previous
section) on edges of GDS will not be calculated explicitly; they are represented
in Figure 4.5, which shows GDS . In the diagram, the vertices (s, c) have been
depicted so that the components s are shown inside circles, with the commit-
ments c shown adjacently and outside. Vertices of the form (s, comDS) have
been circled twice.

After replacing the commitments by natural numbers, we arrive at the run
system G∗

D, whose vertices are

({p}, 0), ({p}, 1), ({¬p}, 0), ({¬p}, 1),

and whose edges are

(({p}, 0),{a}, ({p}, 1)), (({¬p}, 0),{a}, ({¬p}, 1)),
(({p}, 0),{¬a}, ({p}, 0)), (({¬p}, 0),{¬a}, ({¬p}, 0)),
(({p}, 1),{a}, ({p}, 1)), (({¬p}, 1),{a}, ({p}, 1)),
(({p}, 1),{¬a}, ({p}, 0)), (({¬p}, 1),{¬a}, ({p}, 0)),

It is clear that paths through this run system—beginning at a double-circled
vertex and of length t—correspond to models of the causal theory ΓDS

t , as
Theorem 4.4 assures us.

4.3.5 Second Example Generation

As a further example, consider the following, more complex action description
of C+timed, which we call Dpq. The Boolean signature contains only the simple
fluent constants p and q.

inertial p

caused p if λ2(q)
caused ¬q if λ(q)
caused ¬q if λ(¬q)

4.3. Graphical Models 127

It is to be hoped that the behaviour which this action description defines is
intuitively obvious: if q is true in a state, then two states into the future, p
must be true. Otherwise, inertia determines the behaviour of p. As for q, it
may be either true or false in the initial state, but in all states after the initial,
it must be false. There are no action constants.

The laws of this action description have been chosen to illustrate how the
graphs GD and G∗

D (which, of course, are isomorphic) may often be pruned
without removing the property that they are representative of the relevant action
description. (Perhaps it was obvious, in the case of the action description in
Section 4.3.4, that the run systems can be reduced: for the system which resulted
there, and which was depicted in Figure 4.5, has more vertices than the run
system in Figure 4.3 which represents the same system.)

For the action description Dpq, we have that the set init, which is given by
{s ∈ I(σf) | s[0] |=C ΓDpq

0 }, is equal to

{{p, q}, {p,¬q}, {¬p, q}, {¬p,¬q}},

and thus all possible combinations of evaluations of p and q are present. The
set comDpq evidently contains only the single commitment

p[2]⇐ q[0],

and so we have ⋃
n>0

cmtn(comDpq) = {p[2]⇐ q[0], p[1]⇐ >}

The vertices of the graph GDpq are then pairs where the first place is taken by a
member of init and the second by a subset of

⋃
n>0 cmtn(comDpq) which contains

p[2]⇐ q[0]. There are clearly 8 such combinations, and thus |V (GDpq)| = 8.
As for the edges of the graph GDpq , they are triples ((s, c), e, (s′, c′) such

that

• s[0] ∪ e[0] ∪ s′[1] |=C ΓDpq

1 ∪ c∗, where c∗ is the result of removing from c
all commitments in which there is a constant not in the signature σ1; and

• c′ = comDpq ∪ transcom(s, e, c).

After an analysis to obtain the set of edges E(GDpq), we can depict the full graph
GDpq as in Figure 4.6. We have used a concise representation for the vertices
of the graph, abbreviating the two commitments p[2] ⇐ q[0] and p[1] ⇐ > by
the numerals 2 and 1. Brackets for sets and tuples have also been omitted. As
normal, those states of the form (s, comDpq) have been circled twice, denoting
the fact that they are the legitimate starting point of runs through the system.

We have also shaded those nodes which can be reached on a path starting
from an ‘initial node’ (one which is of the form (s, comD)). In our previous
generation of a run system, it all vertices in the graph could be so reached,
but, as mentioned above, in the current instance we have chosen causal laws
specifically so that some nodes may never be reached. Clearly, these nodes can
be removed from G∗

D (or GD), along with any edges incident to them (we have
drawn these edges with dashed lines in Figure 4.6). It is easy to see why, given
the causal laws of the action description, the top outer nodes cannot be reached:

128 Chapter 4. Distant Causation

¬p,¬q
2,1

p, q
2

p,¬q
2

¬p, q
2

¬p,¬q
2

p, q
2,1

p,¬q
2,1

¬p, q
2,1

¬p,¬q
2,1

Figure 4.6: The graph GDpq

for the presence in each of the commitment p[1]⇐ > implies that in a previous
state, q would be true: but there can be no edge leading to these nodes (and
so no such previous state) as any state component of a node reachable from
another must have q as false, given the law ¬q if λ(q).

4.3.6 Reduction

We know that if we remove the unshaded nodes and dashed edges from Figure 4.6
then the system depicted continues to represent Dpq; this is true in general.

Theorem 4.5 Let D be an action description of C+timed. Then if X ⊆ V (G∗
D)

is the subset of nodes (st, ct) of GD such that for no t > 0 is there a path

((s0, 0), e0, . . . , et−1, (st, nt)),

then the graph G−
D whose vertices are V (G∗

D)−X and whose edges are

E(G∗
D)− {((s, n), e, (s′, n′)) | (s, n) ∈ X or (s′, n′) ∈ X}

is a run system representing D.

Proof: Let G∗
D represent D, and first assume that

s0[0] ∪ · · · ∪ st[t] |=C ΓD
t .

Then there is a path through G∗
D of the form

((s0, 0), e0, . . . , (st, nt)),

and clearly this path must also be in G−
D. The other direction is just as trivial.y

The removal of these nodes and edges suggests that we impose an ordering
on run systems representing a given system described by C+timed, and it seems
that the most appropriate ordering to consider is one based on the cardinality
of vertices and edges.

4.3. Graphical Models 129

Definition 4.6 Let D be an action description of C+timed, and G1
D, G2

D be run
systems representing D. Then we define an ordering such that:

G1
D <r G2

D if
{
|V (G1

D)| < |V (G2
D)|, or

|V (G1
D)| = |V (G2

D)| ∧ |E(G1
D)| < |E(G2

D)|.

If, for a run system G∗
D representing D, there is no other run system G′

D rep-
resenting D such that G′

D <r G∗
D, we say that G∗

D is a minimal run system for
D. y

Removing nodes and edges from run systems which cannot be reached on a
path beginning at a node of the form (s, 0) is one way of making the run systems
smaller according to the ordering defined above. Yet consider Figures 4.3 and
4.5. We gave Figure 4.3 as an example of what we were aiming for in producing
a run system for the simple domain DS, but if that is correct then in generating
the system depicted in Figure 4.5 we have missed our target, and in a way
that the removal of unreachable nodes and edges cannot remedy. This raises
the question of whether there are other rules we can give on how to reduce the
graphs.

We proceed intuitively. Reduction might be thought to involve identifying
vertices which were previously different, ‘collapsing’ a set of vertices onto a
single representative of that set. Clearly, for any two vertices (s, n) and (s′, n′)
in a set which is reducible, we must have s = s′. Assume GD is a run system
for the C+timed domain D, and that there is S ⊆ V (GD), such that

• for all (s, n), (s′, n′) in S, we have s = s′;

• if (s0, n0) ∈ S and ((s0, n0), e, (s1, n1)) ∈ E(GD), then for all (s′0, n
′
0) ∈ S,

we have ((s′0, n
′
0), e, (s1, n1)) ∈ E(GD).

Then we might collapse the members of S onto a single representative, as fol-
lows. If (s, 0) ∈ S—an initial state—then we choose that vertex as the repre-
sentative, otherwise we choose any member of S. Let the chosen member of S
be (s∗, n∗). Then, we remove each edge ((s0, n0), e, (s, n)), for (s, n) ∈ S, from
GD, and replace it by the edge ((s0, n0), e, (s∗, n∗)). We also remove each edge
((s, n), e, (s0, n0)), where (s, n) ∈ S, and replace it by ((s∗, n∗), e, (s0, n0)). We
then remove the vertices S − {(s∗, n∗)} from GD. This procedure is continued
until there are no more sets S satisfying the properties given above.

Theorem 4.7 Let G1
D represent D, and S ⊆ V (G1

D) satisfy the two constraints
given above. Let G2

D be the result of collapsing the members of S onto a single
member (s∗, n∗) as described. Then there is a run

((s0, 0), e0, (s1, n1), . . . , (st, nt))

through G1
D iff there is a run

((s0, 0), e0, (s1, n
′
1), . . . , (st, n

′
t))

through G2
D.

Proof: Straightforward, by induction on the length t of runs. y

130 Chapter 4. Distant Causation

Our notion of the reduction of a run system to one smaller but still representing
the same action description of C+timed is closely related to the modal-logical
concept of a bisimulation contraction, and to work in automata theory on finding
minimal representations for finite-state machines. A recent paper on efficient
algorithms for computing bisimulation contractions is [DPP04], Section 2 of
which provides a concise overview of work in this area.

Let us return to the action descriptions of Sections 4.3.4 and 4.3.5. It is clear
by inspection that the subset comprising the two left-most nodes in Figure 4.5
satisfies the definition of S given above and can be collapsed, to the system
shown in Figure 4.3. That run system is clearly minimal. And the system
we generated for Dpq, and from which we removed the unreachable nodes and
edges, can clearly be reduced to give the graph shown in Figure 4.7. That is

¬p,¬q

p, q

p,¬q

¬p, q

¬p,¬q

Figure 4.7: A minimal run system for Dpq

obvious because the two nodes

({p,¬q}, {2,1}) and ({p,¬q}, {2})

which have been collapsed onto a single node, have identical outgoing edges.
Further reductions of this run system are not possible.

4.3.7 Third Example—Reagan and Gorbachev

As a third illustration, consider the following version of a familiar example from
the field of deontic logic [Bel87]. (In deontic logic it is used in the study of
‘contrary-to-duty’ reasoning; we exploit it for different purposes here.)

If Reagan is told crucial strategic information, then Gorbachev must also
be told, unless Gorbachev knows already; and vice versa. Once someone is
told, then they know. We model this in C+timed using a Boolean domain, with
σsmpl = {kr, kg} and σex = {r, g}. kr represents that Reagan knows, and r is
the action of telling Reagan; similarly for g and Gorbachev. The causal laws for
this domain, Drg:

inertial kg, kg if λ(g),
inertial kr, kg if λ(g),
g if ¬kg ∧ λ(r),
r if ¬kr ∧ λ(g).

4.3. Graphical Models 131

Notice that the last two laws above could not have been expressed directly in
C+. Noteworthy is the fact that we only insist that Gorbachev (for example)
should be told if an action of telling Reagan is performed; if the system starts
in a state where there is disparity of knowledge, no telling need take place. A
run system for this domain is shown in Figure 4.8.

¬kr,
¬kg

kr,
kg

kr,
¬kg

¬kr,
kg

kr,
¬kg

¬kr,
kg

r, g

r,¬g

¬r, g

¬r,¬g

r, g ¬r, g

¬r,¬g
r,¬g

r, g r,¬g

¬r,¬g
¬r, g

r, g

¬r, g

r, g

r,¬g

¬r,¬g

¬r, g

r, g

r,¬g

Figure 4.8: Reagan and Gorbachev

4.4 Interaction with nC+
Say an agent promises to perform an action for another agent at some specified
time in the future. If the agent fails to perform the promised action, we may
wish to signal this as a breach of contract, regulation, or statement of assurance.
This can be achieved using nC+, which we described in Section 2.2.

However, the motivating example for C+timed surfaces here in much the same
form. For if the promise above is for an action to be performed 20 time-steps in
the future, a proliferation of agents and promises would make our logical model
complex and computationally inefficient. This argues in favour of a marriage of
nC+ and C+timed.

132 Chapter 4. Distant Causation

4.4.1 The Language nC+timed

We supplement the language of C+timed with permission laws, which have the
form

not-permitted F if G. (4.4)

Here, F is a formula, and G is a formula which can contain nested λ or >, given
as in (4.1). Further restrictions match those from Section 4.2: a permission
law is simply a law of C+timed with the prefix not-permitted. Where D is an
action description of nC+timed, we say that the C+timed-component of D is that
subset of its laws which do not contain the keyword not-permitted. Laws of
nC+timed can be given a canonical form just as for C+timed.

Translation to causal theories proceeds just as one would expect, given the
translation for nC+ described in [SC06] and presented in Section 2.2, and the
translation of C+timed domains into causal theories given earlier in the current
chapter. Thus let D be an action description of nC+timed with signature σ. The
causal theory ΓD

t consists of the causal rules

F [i + nk]⇐
k∧

j=0

Gj [i + (nk − nj)],

for each law of the form (4.2) in D and every i ∈ {0, . . . , t−nk−1}, if F contains
an action constant, and i ∈ {0, . . . , t− nk}, otherwise; the rules

c[0]=v ⇐ c[0]=v

for each simple fluent constant c and v ∈ dom(c); the rules

status[i + nk]=red⇐ F [i + nk] ∧
k∧

j=0

Gj [i + (nk − nj)],

for each law (4.4) where F ∈ fmla(σf) in D and i ∈ {0, . . . , t−nk−1}; the rules

trans[i + nk]=red⇐ F [i + nk] ∧
k∧

j=0

Gj [i + (nk − nj)],

for each permission law where F contains an action constant and i ∈ {0, . . . , t−
nk}; the rules

status[i]=green⇐ status[i]=green

for i 6 t; the rules
trans[i]=green⇐ trans[i]=green

for i < t; and finally, to ensure that a version of the ggg constraint is respected,
the rules

trans[i]=red⇐ status[i]=green ∧ status[i + 1]=red

for each i < t.

4.4. Interaction with nC+ 133

Consider the example Boolean action description DP , whose signature is
given by σsmpl = {p} and σa = {a}, and whose causal laws are

inertial p,

exogenous a

p if λ(a),

not-permitted p if λ2(a).

What of the run systems? The means of generating these using causal the-
ories and commitments, as described in Section 4.3.3, proceeds as before. This
will give us the run system shown in Figure 4.9, for DP , after the graph G∗

D

¬p¬a ¬a

a

¬a

a

a
a

¬a

¬a

a

p p

p

p ¬p

red

green

green

red

Figure 4.9: Run system for nC+timed domain DP

has been fully reduced in accordance with the steps described in Section 4.3.6.
This certainly corresponds to what had been intended in the action description.

Notice however that the graph does not simply represent a colouring of the
run system defined by the C+timed-component of the action description DP .
Thus we cannot say of nC+timed that adding permission laws simply adds colour
to the states and transitions—there may be a radical restructuring of the original
run system, and in a certain sense this makes our models deontically non-local :
the colour of states and transitions need not depend only on the interpretations
(ignoring the values of the constants status and trans) which constitute those
states and transitions. We can spell this out. Where x is a set of atoms, let
pure(x) be

x− {c=v | (c = status ∨ c = trans) ∧ v ∈ dom(c)}.

Then, in our run system we may have vertices (s, n) and (s′, n′), where pure(s) =
pure(s′), but (s, n) and (s′, n′) are coloured differently. Similarly for transitions:
it is possible to have two edges ((s1, n1), e1, (s′1, n

′
1)) and ((s2, n2), e2, (s′2, n

′
2))

where pure(s1) = pure(s2), pure(e1) = pure(e2) and pure(s′1) = pure(s′2), but
where the edges have different colours. We have both kinds of non-locality in
the shown run-system for DP .

134 Chapter 4. Distant Causation

4.5 Summary

C+timed is a natural generalization of C+. Syntactically, C+timed extends the
laws of C+ by adding a λ-operator allowing reference to past states and tran-
sitions: it thus removes the restriction to the immediately preceding state and
transition. Semantically, it generalizes the transition systems defined by C+
action descriptions. This new kind of transition system we have called a run
system. The transition systems defined in C+ are a special case where there is
only one vertex for each state, and every vertex is initial. We have also shown
how action descriptions of C+timed are a shorthand for causal theories; using
C+timed we can make use of more of the language of causal theories, whilst re-
taining the key property: models of the causal theories are in correspondence
with paths through the run system defined by the C+timed action description.
Computationally, action descriptions of C+timed are much more efficient than
attempted encodings of the same domains in C+. The task of implementation
is easy, through an adaptation of CCalc.

We have defined a means of generating a run system from a C+timed action
description. A further step of reduction is sometimes necessary to give the most
compact run systems. Though the reduction steps are sound, we do not yet know
whether they are complete, that is, whether they are guaranteed to result in run
systems which are minimal according to the order introduced. Further work
will explore this question. We are also interested in seeing whether the original
generation of the run systems can be optimized so as to obviate reduction.

Chapter 5

C+ and Model Checking

In the previous chapter we looked at increasing the expressivity of the causal
laws which define an action description, augmenting the syntax of causal laws
which can be written in C+, to enable reference to states more than one time-
step distant from each other, and actions at different time-steps. This made
the representation of domains in which ‘distant causation’ occurs (such as those
involving deadlines) much more convenient and perspicuous. In the present
chapter, our focus will be on increasing the expressivity of query languages for
C+ action descriptions, rather than on the causal laws. The query language
which currently exists for C+ action descriptions, which was formalized in Sec-
tion 2.1.8, is defined on runs, of finite length, through the transition system de-
fined by an action description; we can ask only whether a set of specified atoms
are true at given times. Yet the fact that C+ laws define graphical structures of
the sort which are very common in different branches of computer science, has
suggested to us that we might use the technique of model-checking, frequently
applied to these graphical structures, in order to verify whether properties hold
which are not expressible in the standard query language. One cannot use
current implementations of C+ to ask whether some property of the system
eventually holds, or to consider safety and ‘liveness’ properties of systems.

We have implemented three methods of connecting action descriptions of C+
to model-checkers, two of which use NuSMV,1 an industrially standard model
checker which allows both Bounded Model Checking with SAT methods, and
the older symbolic model checking using ordered binary decision diagrams (OB-
DDs). In this chapter we present the three implementations, together with
examples and comparative studies of the performance of each. Finally, we dis-
cuss the possibilities of using each of our approaches to model-check nC+, our
deontic variant of C+.

We will rely on the terminology and notation introduced in Section 2.5.1 in
the following sections.

5.1 Interlude on FSMs

Before we proceed to give details on the various ways in which we have related
C+ to model-checking, a small technical point needs to be treated. As has

1Program and papers available from http://nusmv.irst.itc.it/.

135

136 Chapter 5. C+ and Model Checking

been described, laws of C+ define labelled transition systems, where the action
constants σa of the signature of an action description are interpreted over the
transitions, rather than at states. It is a substantial advantage of C+ that
actions, in this way, have first-class semantic citizenship. Yet the structures
M = (S, I, T, L) which are used by model-checkers have no content to their
transitions, which are simply arrows between states: any atomic propositions
must be interpreted on states, as the semantics we gave for LTL demonstrates.
We cannot, at this stage, write about temporal logic specifications being true
of systems defined in C+, at least if we wish to allow action constants to occur
in those specifications.

There is an easy remedy for this, well-known in computer science: in giving
the graphical structure which an action description D of C+ defines, we simply
move the interpreted action constants (from the component e of a transition
(s, e, s′) in the transition system) back within the states of the FSM, and alter
the arrows T between states accordingly. Reference to actions performed is
then possible from the temporal logic defined over our structures, as the actions
become atomic elements evaluated at states of the FSM.

Let us illustrate this with reference to the simple Boolean action description
shown in Figure 5.1. There are three states; from two of these two actions

σf = {p, q}
σa = {a}

inertial p, q

exogenous a

q if p

p if > after a.

nonexecutable a if p
¬p,¬q

p, q ¬p, q

¬a

¬a
a

a¬a

Figure 5.1: Simple action description and its transition system.

are possible ({a} and {¬a}), and from one state only one action is possible
({¬a}, from the state where both p and q are true). This gives five possible
pairings of actions with states, and so the FSM to which the action description
of Figure 5.1 corresponds will have five states. It is depicted in Figure 5.2.
Though runs through the transition system and runs through the FSM are not
in one-to-one correspondence, it should be clear that there is a close relationship
between the two structures. In fact, runs through the FSM map surjectively to
runs through the transition system, as Theorem 5.2 shows.

In general, we derive the FSM directly from the transition system for an
action description in the following way. Let D be an action description of C+,
with signature σ = σf ∪ σa. We will say that for some interpretation s of σf ,
the s-transitions are those transitions (s, e, s′) for some e ∈ I(σa) and s′ ∈ I(σf).
The s-labels are the members of I(σa) which feature as the second component
of some s-transition.

Definition 5.1 The FSM defined by the C+ action description D is the struc-
ture MD = (SD, ID, TD, LD), where the underlying set A of atoms is {c=v | c ∈

5.1. Interlude on FSMs 137

¬p,¬q
¬a

p, q
¬a

¬p, q
a

¬p, q
¬a

¬p,¬q
a

Figure 5.2: FSM for transition system in Figure 5.1.

σ, v ∈ dom(c)}.

• SD is the set of unions s∪ e, where s is a model of ΓD
0 and e is an s-label

(if there are no s-labels, we include s ∪ {∅});

• ID is SD (all states are possible initial states);

• TD ⊆ SD × SD is such that (s ∪ e, s′ ∪ e′) ∈ TD (where s, s′ ∈ I(σf)) iff
(s, e, s′) is a transition of D—i.e. if s[0] ∪ e[0] ∪ s′[1] |=C ΓD

1 ;

• LD : SD → ℘(A) is the identity (since states are sets of atoms).

A run (or path) through such a FSM is any (finite or infinite, ω-length) sequence
of states ((s0 ∪ e0), (s1 ∪ e1), . . . ,), such that where the sequence is finite and
terminates with (sn ∪ en), for all i with 0 6 i < n− 1, we have ((si ∪ ei), (si+1 ∪
ei+1)) ∈ TD. Where the run is infinite we should have ((si∪ei), (si+1∪ei+1)) ∈
TD for all i with 0 6 i. (We will usually write states as unions of the form
s ∪ e for s ∈ I(σf) and e ∈ I(σa), as we have here, to facilitate the statement of
relations to C+.) y

Given a run π (finite or infinite) through a FSM MD defined by an action
description D we let τ(π) be given by

• τ(π), where π = ((s0 ∪ e0), . . . , (sn ∪ en)) (π is finite) is

(s0, e0, s1, e1, . . . , en−1, sn),

• for infinite π = ((s0 ∪ e0), (s1 ∪ e1), . . .), τ(π) is

(s0, e0, s1, e1, . . .)

As might be expected, we have the following easy correspondence theorem.

Theorem 5.2 Let D be an action description of C+, and MD the finite state
machine defined by D. Then

• τ is injective from the set of infinite paths through MD to the set of infinite
runs through the transition system defined by D; and

138 Chapter 5. C+ and Model Checking

• τ is surjective from the set of finite runs of MD to the finite runs of D’s
transition system.

Proof: Let π be a run through the finite state machine, finite or infinite, as
described. Clearly τ(π) is a run through the transition system immediately by
definition. (For all i with 0 6 i < n− 1, (si, ei, si+1) is a transition of D.)
If π is infinite the proof of the specified injectivity is straightforward.
Suppose, on the other hand, that π is finite. For surjectivity, let (s0, e0, . . . , sn)
be a run through the transition system of D. Then if there are no sn-labels,
π = (s0 ∪ e0, . . . sn ∪ {∅}) is a run through MD with τ(π) = (s0, e0, . . . , sn). If
there is at least one sn-label, say en, then (s0 ∪ e0, . . . sn ∪ en) is a run through
MD which corresponds by τ to (s0, e0, . . . , sn). y

(It is indeed clear that this correspondence is not one-to-one, as can be seen by
considering our running example. For the runs in Figure 5.3, which start at the

¬p, q
¬a

¬p, q
¬a

¬p, q
¬a

¬p, q
a

and

Figure 5.3: Two runs through Figure 5.2

state depicted at the top-right in Figure 5.2, map to the same transition in the
labelled system shown in Figure 5.1.)

The implementations we will present in the succeeding sections will be shown
to produce, using a C+ action description as raw material, a FSM as defined as
above (or one which may be treated as though it were identical to that FSM).
We now move on to the first of those implementations.

5.2 First Implementation

Our first method of connecting C+ to model-checking supplements predicates
which already exist in CCalc, without using an external model-checker such as
NuSMV (as we will do with the second and third implementations).

Recall from Section 2.5.1 that the verification that a system satisfies a prop-
erty is expressed in Bounded Model Checking (BMC) as the problem of finding
models for the formula [[M,f]]k defined as

[[M]]k ∧
((
¬Lk ∧ [[f]]0k

)
∨

k∨
l=0

(
T (sk, sl) ∧ l[[f]]0k

))
,

where [[M]]k is satisfied by interpretations which represent runs through the tran-
sition system which represents the behaviour of the domain we are modelling.
Yet we know that CCalc itself already produces a propositional representation
of [[M]]k: this is simply the literal completion of ΓD

k cast into conjunctive normal
form (CNF), ready to be conjoined with a query to be passed to an external
SAT-solver. Thus, in implementing BMC in CCalc, all we have left to do in

5.2. First Implementation 139

order to express [[M,f]]k in CNF is to find a clausal equivalent of

((
¬Lk ∧ [[f]]0k

)
∨

k∨
l=0

(
T (sk, sl) ∧ l[[f]]0k

))
, (5.1)

where f , as usual, is the negation of a specification in LTL. The result can then
be conjoined to the clauses for [[M]]k and sent for solution.

The left-hand disjunct of (5.1), as we saw in Section 2.5.1, represents the
case where the run does not loop back to an earlier state of itself; that part
of the formula is more straightforward to translate into CNF. The right-hand
disjunct represents the case where there is a loop back from the kth state to
some earlier (the lth) state, and this part requires a little more work.

The details are as follows. For the components [[f]]0k and l[[f]]0k it closely
matches the translation schemes given in Section 2.5.1, with modifications to
ensure that the predicates do not loop infinitely in an attempt to produce a
formula of infinitary logic. CCalc represents atoms of the signature of ΓD

k by
integers, and so the atomic clauses which define the translation of the formulas
[[f]]0k and l[[f]]0k will depend on a function ι whose domain is the set of atoms
of ΓD

k and whose range is the integers used by CCalc to represent those in-
tegers; this function encodes the CCalc representation. All we need to do is
change the propositional and negation cases from the translation schemes given
in Section 2.5.1. The updated clauses for [[f]]0k and l[[f]]0k are the same:

[[c=v]]ik := ι(c[i]=v) l[[c=v]]ik := ι(c[i]=v)

[[¬(c=v)]]ik := ¬ι(c[i]=v) l[[¬(c=v)]]ik := ¬ι(c[i]=v)

Thus, suppose a very simple case in which the negation of the specification we
wish to check is X(loc=barn ∧X loc=barn), and we are checking with runs of
length 3. We have

[[X(loc=barn ∧X loc=barn)]]03 = [[loc=barn ∧X loc=barn)]]13
= [[loc=barn]]13 ∧ [[X loc=barn)]]13
= ι(loc[1]=barn) ∧ [[loc=barn]]23
= ι(loc[1]=barn) ∧ ι(loc[2]=barn)

The result of this translation process could be sent to a SAT-solver as it is,
already in conjunctive normal form.

The causal theory ΓD
1 defines the transitions of the labelled transition system

of D; interpretations of the relevant signature which make the completion of ΓD
1

true may be thought of as depicting transitions between states s0 and s1. In
order to represent the formula T (sk, sl), which is true when there is a transition
from state sk to state sl of a run, we use variants of the propositional clauses
depicting the completion of ΓD

1 : each fluent or action constant c[0] occurring
in the original clauses is replaced by a constant c[k] (as the initial state of the
transition is the kth), and constants c[1] are replaced by c[l] (the transition
moves to the lth state).

Since, to cope with the case where there is a loop from the final state of
the run sk to some other state sl, we must consider actions performed when the
system is in sk, additional action atoms will need to be added to the signature of

140 Chapter 5. C+ and Model Checking

ΓD
k . Normally, given an action description D in C+, the signature of the causal

theory ΓD
k is made by time-stamping fluent constants with all t for 0 6 t 6 k,

and all action constants with t for 0 6 t < k, the discrepancy of treatment
reflecting the fact that runs are conceived of as ending with the last state, in
which no actions are performed. Yet if there is a loop from sk to sl, there must
be an action which effects that loop, and so we will need the members of σa

stamped for time k; it is easy to define a procedure which adds these atoms to
the count.

CCalc represents atoms of the signature of ΓD
k by integers; we will introduce

several new integers to enable our translation of [[M,f]]k to be expressed more
concisely. For complex action descriptions D the list of clauses representing the
completion of ΓD

1 will be long, and since the clauses representing T (sk, sl) have,
as has been explained, the same structure as the completion of ΓD

1 , T (sk, sl) will
also be large. So, as T (sk, sl), for each specific value of k and l, will turn out to
appear many times in the propositional representation of [[M,f]]k once this has
been converted to CNF using De Morgan’s laws, we will introduce integers llk
representing each expansion of T (sk, sl), using those integers in [[M,f]]k instead,
and adding to the clauses sent to the SAT-solver a representation of

llk ↔ T (sk, sl).

Such techniques are common in translating formulas to propositional logic, and
repeated experimentation has shown their usefulness in the current context. We
apply the same technique to the formulas l[[f]]0k (for all l with 0 6 l < k) and
[[f]]0k, adding integers to represent each of these formulas, and using these single
integers in place of the clauses throughout our translation.

We have written procedures implementing these methods for supplementing
CCalc’s own representation of [[M]]k with a translation of

((
¬Lk ∧ [[f]]0k

)
∨

k∨
l=0

(
T (sk, sl) ∧ l[[f]]0k

))
.

The implementation is in Prolog, and runs successfully alongside CCalc so
that one may easily switch from performing bounded model-checking of LTL
formulas to making standard queries in CCalc’s own query language (that
defined in Section 2.1.8). We will comment more on the performance and success
of our first method in Section 5.5, where we compare our three implementations.

5.3 Second Implementation

As mentioned in the introduction to the current chapter, NuSMV is a state-of-
the-art model-checker, used extensively both in research applications and indus-
try. NuSMV works by constructing a representation of a finite state machine
in OBDDs, or runs through a finite state machine in formulas of propositional
logic, and adding to this a representation of a specification in a temporal logic.
The user defines the finite state machine embodying the system’s behaviour by
writing a program in SMV.

An SMV program has several parts. The first is a specification VAR of a
signature: a number of state variables, and a domain of values for each. In-
terpretations of the state variables determine the state of the system, so that

5.3. Second Implementation 141

state variables are analogous to the fluent constants of C+, with the exception
that, as no formulas are evaluated on the edges of the finite state machine, any
actions which are performed must, as has been described in Section 5.1, also be
represented by SMV state variables.

SMV programs also contain an ASSIGN declaration: rules which specify the
value of state variables at the next state, depending on what else is true at the
next state, and what is true at the current state. (The similarity of these to
fluent dynamic laws in C+ is something we shall exploit in the current, second
implementation.) The ASSIGN declaration also allows one to specify values which
state variables must take initially.

An SMV program may also contain a DEFINE declaration. This allows one
to introduce new state variables which do not have full semantic status, in that
their values depend solely on the values of other state variables, and they are
not used in the construction of NuSMV’s internal representation of the model.
They should be thought of as a convenient interface to the real state variables.
We will not use a DEFINE declaration in our second implementation, but it is
crucial to the utility of our third implementation.

Instead of defining a finite state machine implicitly, by many rules within an
ASSIGN declaration which must be composed correctly to yield their semantics,
one may include a TRANS declaration. This is a formula of propositional logic,
written in terms of the current and next-state values of state variables. The
transition relation of the finite state machine is then determined by the models
of this formula. The TRANS declaration affords a very convenient, sometimes
concise way of specifying the behaviour of a system, and we shall make use of
it in our third implementation, where it is especially useful because we use very
few–two, in fact—state variables.

Finally, SMV programs can contain a number of specifications in LTL or
CTL, to verify upon the model defined by the rest of the code.

The second implementation constructs an SMV program which defines a
FSM representing the behaviour of the system whose action description in C+
is taken as input. The objective here has been to find close equivalents of the
action description on a law-by-law basis, so that one can easily determine the
parts of the SMV code whose inclusion is forced by the presence of a particular
causal law. It ought to be possible, in many cases, for a human user of our
implementation to look at the SMV code which is produced, understand it,
and then to modify it. Our hope has also been that in basing our translations
to SMV explicitly on the structure of laws rather than encoding the entire
transition system, we will produce a more efficient representation of the system
which we are modelling; this hypothesis will be investigated experimentally later
in the chapter.

Thus, the signature of our C+ action descriptions will map to a VAR decla-
ration, giving the state variables in SMV. Causal laws of the action description
will, very roughly, correspond to the clauses and cases of an ASSIGN declaration,
though there are a number of complications here which will examine in the sec-
tions that follow. Finally, any queries found with the CCalc representation of
the action description are translated to LTL.

142 Chapter 5. C+ and Model Checking

5.3.1 Limitations

The second algorithm works only for a restricted subset of C+ action descrip-
tions. We here delineate that subset, and explain why the limitations are nec-
essary.

The first limitation insists that the action descriptions we use should be def-
inite. As it is rare, in our experience, that we encounter domains which must
be formulated as non-definite action descriptions, this does not count as a sub-
stantial restriction for us. The reason for this narrowing of the classes of action
descriptions is that SMV specifies the values for state variables on a variable-
by-variable basis; because state variables will correspond to the constants of the
signature of an action description, we cannot allow the heads of our causal laws
to be anything other than an atom or ⊥. (We could have allowed conjunctions
of atoms in the heads of our causal laws, but in C+ the transition system defined
by an action description containing

c=v ∧ F if G

(where G is either a formula of σ or else an expression G1 after H befitting a
fluent dynamic law) is the same as the transition system defined by the action
description formed by replacing that causal law with the two others

c=v if G and F if G.

In this way, disallowing conjunctions in the heads of causal laws is not a real
restriction.)

The second limitation is closely related to the concept of dependence which
was brought forward to help specify EC+ in Section 3.1: we alter this concept,
applying it now to causal theories, though in much the same spirit as previously.
Consider a causal theory Γ with signature σ. A dependency graph for Γ can be
drawn, as follows:

• the nodes of the graph are the constants of σ;

• a (directed) edge goes from c to c′ iff there is a causal rule in Γ with c′ in
the head and c in the body.

This is a very familiar idea in computer science. We will say that an action
description D of C+ exhibits generalized dependency when there is a circuit in
the dependency graph of ΓD

1 which includes no edges from a node to itself.
The model-checker NuSMV, which takes as input specifications of systems

written in SMV, will not accept definitions of the behaviour of the system in
which there is a circular dependency among state variables. The way in which
our second algorithm finds equivalents in SMV for C+ action descriptions means
that such circular dependency in the ASSIGN declaration of the source file we
produce occurs when the C+ action description exhibits generalized dependency,
as defined above. Thus, if we wish to use NuSMV to verify properties of our
systems, we must restrict the action descriptions we work with to those which
do not have generalized dependency.2 (We will remove these restrictions on the
form of action descriptions in our third implementation.)

2Care has been taken here to refer to the acceptability of circular dependency to NuSMV,
rather than the well-definedness of the semantics of circularly dependent SMV programs.
As McMillan writes in his Ph.D. thesis: “In fact, this semantics assigns meaning to some
programs which are not actually accepted by the compiler due to the rules regarding [. . .]
circular dependencies” [McM93], page 118.

5.3. Second Implementation 143

The third and final requirement on the form of C+ action descriptions is
more complicated, and relates to default conditions in causal laws and the causal
rules derived from them. It is easiest to explain the restriction we are about
to impose on the form of action descriptions by reference to restrictions on the
SMV programs to which they correspond, and then to work backwards to the
originating C+ formulation.

When writing rules which determine the value of a state variable in SMV
after a transition (rules which specify, for some state variable c, the value of
next(c)) it is possible to be more or less comprehensive. Suppose that c can
take three values, x, y, and z, and that there is another state variable d with
the same domain. Rules such as

next(c) :=
case
c=x: y;
c=y: z;
c=z: {x,y};

esac;

or

next(c) :=
case
d=x: x;
1: y;

esac;

are exhaustive in their specification of what the value of c must be following a
transition. Both groups of case expressions cover all possible cases: at least
one of the expressions must, in both instances, be true. For the first series of
expressions, this is because the value of c in the previous state must be one of
x, y or z: these are the only possible values it can take; for the second rule,
this is because, if d=x is not true in the previous state, then there is a default
condition which then constrains the value of c in the next state to be y. This
means that the model-checker knows how to calculate the next value of c, based
on information it already knows (even though, according to the first rule, when
c=z is true in the previous state, it must choose non-deterministically between
x and y for the updated value).

If this sort of exhaustive coverage of cases does not occur, then NuSMV
assumes, in the absence of an explicit default such as that in the right-hand
rule, that the default value of the state variable is 1; here lies our problem.
Since, to state the function of our algorithm crudely, conditions in these case
expressions will roughly correspond to causal rules, NuSMV’s assumption of
a default value in the situation where, through lack of exhaustive coverage, it
assumes one is needed, will be tantamount to the presumption of an additional
causal rule in ΓD

1 —of the form

c[n]=t⇐ c[n]=t.

Of course, this may disastrously affect the transition system which ΓD
1 is called

on to define: for although we have that for all causal theories Γ, models(Γ) ⊆
models(Γ ∪ {F ⇐ F}) (Proposition 14 of [SC05a]), this inclusion cannot be

144 Chapter 5. C+ and Model Checking

strengthened to an equality, as discussion in [SC05a] demonstrates. Even worse,
the value t may not even be in the domain of c.

To prevent these difficulties, we limit the set of C+ action descriptions D to
which our algorithm applies. Where c is a simple fluent constant of the signature
of D:

• D should contain inertial c; or

• D should contain, for some v ∈ dom(c), default c=v; or

• D should contain laws

caused c=v1 if c′=v′1,

...
caused c=vm if c′=v′n

where dom(c′) = {v′1, . . . , v′n}, or

• D should contain laws

caused c=v1 if > after c′=v′1,

...
caused c=vm if > after c′=v′n

where dom(c′) = {v′1, . . . , v′n}.

(The ‘or’ here is inclusive.) Where c is a statically determined fluent constant,
we insist that the second or third of the above conditions should be satisfied—
since where c is statically determined, laws of the first and fourth cases cannot
exist. Finally, where c is an action constant, we require that

• exogenous c should be contained in D; or

• there should be action dynamic laws

caused c=v1 if c′=v′1,

...
caused c=vm if c′=v′n

where dom(c′) = {v′1, . . . , v′n}.

It should be clear what effect the satisfaction of these constraints will have
on the causal theories ΓD

0 and ΓD
1 , which determine the states and transitions of

the labelled transition system underlying D. Any time-stamped constant c[0] in
the signature of ΓD

0 , or constant c[0] or c[1] in the signature of ΓD
1 , will be caused

to have a value in the reduct (ΓD
n)X (n ∈ {0, 1}), regardless of the interpretation

X. Further, the SMV case expressions which are produced by our algorithm
will have that kind of exhaustive coverage of cases which stops NuSMV from
providing implicit default values of its own when interpreting the rules for initial
and next-state values of those state variables to which the constants of D will
correspond.

5.3. Second Implementation 145

It is frustrating to have to make this third restriction. In our experience,
the second narrowing of the class of action descriptions which we imposed—
the exclusion of laws which have generalized dependency loops—has affected
very few of the action descriptions with which we are concerned. In fact, to
our knowledge, the only action descriptions which have been excluded under
these rules are invented domains not formalized from real-world examples. The
case with the third restriction is different: though it is not the norm, there are
action descriptions which do not conform to the rules we gave above. We cannot
apply this second algorithm to these action descriptions. (This limitation was a
principal factor in motivating the development of our third algorithm for linking
model-checking to action languages; this is discussed below, in Section 5.5.)

5.3.2 Details of the Second Approach

It is easy to check whether an action description of C+ conforms to the three
restrictions made above. The first restriction of definiteness is immediately visi-
ble, and the third restriction is also easy to verify. The second rule we imposed,
that our causal laws should not exhibit what we called generalized dependency,
is slightly more time-consuming as it involved traversing the dependency graph
which we described in the previous section. Nevertheless, all three checks can
be performed automatically and quickly.

Given an action description of C+ conforming to the three restrictions above,
we first form a list of all causal rules which are members of the causal the-
ory ΓD

1 (recall that the models of this causal theory are precisely the tran-
sitions of the labelled transition system defined by the C+ action descrip-
tion). Since CCalc itself converts the C+ action description into ΓD

1 when
the file is loaded, this is simply a matter of extracting the causal rules from the
database of a Prolog system running CCalc. The predicate which does this
is mc2 get causal rules/1, and the rules themselves are after bound to the
variable Rules. It is from these causal rules (rather than from the causal laws
which were used to generate them) that we will make our SMV program.

Note that there may be causal rules in ΓD
1 which have as their head ⊥;

if there are any such rules, then we record that fact. Such causal rules stem
from causal laws of C+ which express that a given combination of fluent atoms
cannot occur in a state, or that some given action is not possible when the
system described is in such-and-such a state. Thus, though a formal argument
is a little more complex, these laws can only remove states and transitions from
the transition system defined by the original action description of C+. There
will be special treatment in our algorithm for the causal rules which derive from
such laws, and the treatment will differ depending on whether the causal rule
stems from a static or action dynamic law on the one hand, or a fluent dynamic
law on the other, in the original action description. The reason that privileged
treatment is necessary here is that it is often awkward in SMV to specify that
certain combinations of values for state variables do not occur, or that, under
given conditions, a transition between states of the system is impossible. There
will be more discussion of the details of this special treatment below.

After the causal rules have been found, the program invokes the predicate
mc2 get constants/1 to find an ordered list of all the (fluent and action) con-
stants of the signature of D; the list is bound to Constants.

146 Chapter 5. C+ and Model Checking

Now the first phase of writing the external SMV file begins, which is to spec-
ify the signature for the SMV program. This mirrors very closely the signature
σ of the C+ action description, the differences being forced by constraints im-
posed on the syntax of state variables and their values in SMV. We loop over
Constants, and for each constant c of σ include a declaration of its presence and
the values it takes in the output file. Brackets in the strings representing c and
its values are replaced by underscores. For instance, the signature of our simple
action description depicted in Figure 5.1, where σf = {p, q} and σa = {a}, and
all constants are Boolean, determines the following SMV code:

MODULE main
VAR
a: boolean;
p: boolean;
q: boolean;

If we had included another action constant walk(hagar) (to represent the action
of Hagar’s walking), whose values were {quickly, slowly}, then the line

walk_hagar: {quickly,slowly};

would also occur in the output file; this illustrates the treatment of brackets.
At this stage we also check whether any causal rules with ⊥ were found

earlier as members of ΓD
1 , and if this is so, we include a special Boolean state

variable false in the SMV code:

false: boolean;

By default, this state variable is evaluated as false, yet we will later specify that
the conditions under which it is true are precisely those which satisfy the body
of a causal rule in ΓD

1 whose head is ⊥. Thus when model-checking using SMV
code generated by the current procedure, for action descriptions which have
laws with ⊥ in the head, we will restrict attention to runs of the finite state
machine along which false is never true. This is easy to do: given an LTL or
CTL specification F , instead of checking for ¬F we simply check for

(G ¬false)→ ¬F

instead. In this way we ensure that states and transitions ruled out of the
transition system by causal laws of the original action description with the head
⊥, do not feature in the finite state machines defined in SMV.

As an example, consider again the action description shown in Figure 5.1.
This contains the causal law

nonexecutable a if p,

which means that the causal rule

⊥ ⇐ a[0] ∧ p[0]

is a member of ΓD
1 . The finite state machine defined by the SMV code which our

second algorithm produces is shown in Figure 5.4; the drawing conventions here
are that those states in which false is evaluated as true (in SMV, assigned value

5.3. Second Implementation 147

¬p,¬q
¬a

p, q
a

p, q
¬a

¬p, q
a

¬p, q
¬a

¬p,¬q
a

p, q
a

p, q
¬a

Figure 5.4: FSM actually defined by SMV code for domain of Figure 5.1.

1) are shaded, and that transitions linking to or from such states are dashed
rather than drawn continuously. The subgraph of that finite state machine
comprising states in which false is true (and from which we remove transitions
connected to states which make false true) is clearly the same as the FSM given
in Figure 5.2, which is obtained directly from the labelled transition system
which the C+ action description determines. Thus in this instance, restricting
the model-checker to runs along which the state variable false is false will
ensure that counterexamples to any specifications presented for verification are
indeed counterexamples, rather than spurious runs which should not be possible
given the presence of the relevant law, or laws, with ⊥ in the head.

So much for the specification of state variables and related matters. We turn
back to the stages of our algorithm: the next is to write the ASSIGN declara-
tion to the SMV file, which specifies what the initial values of state variables
may be, and also how their values in the state after a transition depend on
their values before the transition is made. The outermost loop for this stage
is controlled by the predicate mc2 assign loop aux/3, which recurses over the
list of constants Constants which we bound earlier. This is the most involved
part of the algorithm, for we here seek to extract SMV conditions governing
the behaviour of individual state constants from the causal theory into which
CCalc has converted the original C+ action description. There are two aspects
of this stage which require particular care.

The first is how to deal with potential conflicts between causal laws. Consider
the action description and transition system in Figure 5.5. In the situation where
both p and q are true in a state, there are no outgoing transitions, as both a
and ¬a would be caused. Yet the structure and semantics for SMV are such
that this is difficult to constrain, and we must make use of our privileged state
variable false. We do this as follows. For any constant c of the C+ action

148 Chapter 5. C+ and Model Checking

σf = {p, q}
σa = {a}

inertial p, q

exogenous a

caused a if p

caused ¬a if p ∧ q

caused p if >

p,¬qp, q

a

Figure 5.5: Conflicts in causal laws

description, we check to see whether there are causal rules

c[n]=v1 ⇐ F1 and c[n]=v2 ⇐ F2,

with v1 6= v2, in ΓD
1 , such that F1 and F2 may be true together. Such checking

may be performed more or less thoroughly: the simplest sound method is—
supposing, as usual, that causal laws have been cast into a canonical form where
the bodies are conjunctions of atoms—to check whether there is a constant c∗

such that, for some n∗ ∈ {0, 1}, c∗[n∗]=v appears as a conjunct in F1 and
c∗[n∗]=v′ is a conjunct in F2, for v 6= v′. If such mutually exclusive time-
stamped atoms do not appear in the bodies of potentially conflicting causal
rules, it may be the case that the bodies can be true together, and in this case
we should include an appropriate condition in the ASSIGN declaration for false:

ASSIGN
next(false) :=
case
F1 & F2: 1;
<other cases>
1: 0;

esac;

We can then restrict model-checking to those runs along which false is forever
false, as previously explained. Thus there are two situations in which a state
variable false is included in the signature for our SMV program: first, where
there is some causal rule

⊥ ⇐ F

in the theory ΓD
1 ; and second, where there is a potential conflict in the causal

rules of that theory, as described above.
(As implied, there are more thorough methods of checking whether F1 and

F2 can be true together, and thus whether a conflict may arise. For example,
consider the case where there are the following static laws as part of an action
description:

caused p if q

caused ¬p if q ∧ r

caused ¬r if >.

5.3. Second Implementation 149

The checking we have currently implemented would see the causal rules in ΓD
1

descended from the first two laws, identify them as potentially in conflict, and
add a condition to the clauses governing false as follows:

next(false) :=
case
q & r: 1;
1: 0;

esac;

Yet a more thoroughgoing, intelligent, global analysis of ΓD
1 , even of a relatively

simple kind, would have found that q and r can never be true together, as r
must always be false (because of the presence of caused ¬r if > in the action
description). For the time being, we do not make our analysis more searching,
in directions such as this—it being, in our experience, infrequent that conflicts
arise in causal rules at all.)

We move on to the second feature of our ASSIGN declarations which deserves
attention. An attractive feature of C+ is its expressivity in regard to defaults
and inertia: it is possible to turn inertia on and off for particular fluent constants
(and, indeed, for particular values of fluent constants), to say that a given fluent
is inertial only under given conditions, and to stipulate that there are multiple
possible default values for a given fluent constant or action constant. Now, it
sometimes arises that two different defaults are activated for the same constant.
Consider the example depicted in Figure 5.6. For this system, ΓD

1 consists of

σf = {p, q}
σa = {}

inertial p

caused q if q

caused ¬q if ¬q ∧ p

¬p,¬q

p, q p,¬q

¬p, q

Figure 5.6: Action description with multiple defaults.

the causal rules:

p[1]⇐ p[1] ∧ p[0]
¬p[1]⇐ ¬p[1] ∧ ¬p[0]

q[0]⇐ q[0]
¬q[0]⇐ ¬q[0] ∧ p[0]

q[1]⇐ q[1]
¬q[1]⇐ ¬q[1] ∧ p[1].

It is clearly the presence of the two last causal rules which makes the transition
system (shown in Figure 5.6) non-deterministic: where p is true, q may be either
true or false, and can change exogenously between these values.

150 Chapter 5. C+ and Model Checking

In general, the phenomenon in which we are interested occurs when there
are at least two rules

c[n]=v1 ⇐ c[n]=v1 ∧ F1 and c[n]=v2 ⇐ c[n]=v2 ∧ F2

in the causal theory ΓD
1 , with v1 6= v2, and where the bodies F1 and F2 are not

mutually exclusive (where this is defined as previously, for the case of conflicting
causal rules without defaults).3

SMV evaluates conditions within any given case clause in strict, unvarying,
top-down order. Thus in cases where there are different default conditions for
a constant which may be activated simultaneously, we cannot use a single case
expression to capture the behaviour of our system, since this would necessarily
give priority to whichever of the default rules we wrote first, and runs where
the value of the relevant constant was determined by one of the other default
conditions would be overlooked.

Accordingly, we will make use of a union of multiple case expressions. Sup-
pose that for some given constant c of an action description, there are n causal
rules containing default conditions, as follows:

c[t]=v1 ⇐ c[t]=v1 ∧ F1

...
c[t]=vn ⇐ c[t]=vn ∧ Fn.

Let us further suppose that in ΓD
1 there are a number of rules with the same

time-stamp t and constant c in their head, which are not defaults—i.e., where
whichever time-stamped atom contained in the head does not also occur in the
body of the causal rule. Let these other causal rules be

c[n]=v′1 ⇐ G1,

...
c[n]=v′m ⇐ Gm.

Then, in writing the ASSIGN expression which defines the behaviour of c[n], we
will have one case expression for each different ordering of the causal rules which
contain default conditions; these case expression will then be linked together by
union. This simulates soundly the non-determinism which results from multiple
defaults in C+.

By way of illustration, consider the action description in Figure 5.7. For the
fluent constant p (with domain {x, y, z}) time-stamped for 1, there is one causal
rule in ΓD

1 which is not a default, and three rules which are defaults. In the
SMV code produced by the algorithm, there is one case clause for each possible
ordering of the default rules: six clauses in all. Here is the code, governing the
value of p in the next state, which our algorithm actually produces:

ASSIGN
next(p) :=
case

3This type of interaction between different defaults is the kind explicitly outlawed according
to the restrictions we placed on EC+ in Section 3.1.

5.3. Second Implementation 151

σf = {p} (dom(p) = {x, y, z})
σa = {a}

exogenous a

default p=x

default p=y

default p=z

caused p=x if > after a

p=yp=x

p=z

a

a

a

Figure 5.7: Another action description with multiple defaults.

a: x; 1: z; 1: y; 1: x;
esac union
case
a: x; 1: y; 1: z; 1: x;

esac union
case
a: x; 1: y; 1: x; 1: z;

esac union
case
a: x; 1: z; 1: x; 1: y;

esac union
case
a: x; 1: x; 1: z; 1: y;

esac union
case
a: x; 1: x; 1: y; 1: z;

esac;

In the current example, six clauses are not strictly necessary:4 three would
suffice. The values which p may take after a transition has been made are defined
by the ASSIGN declaration for next(p): p must always take a value in accordance
with one of the case clauses (which thereby function disjunctively), and within
a case clause, it takes the first value such that is paired with conditions true of
the transition (this is standard for SMV, and will not further be explained).

With these two preliminary points concluded, the continuation of the de-
scription of our second algorithm which follows should be more easily under-
stood.

As noted, the phase where we write the ASSIGN declaration is controlled by
the predicate mc2 assign loop aux/3, which recurses over the list of constants
Constants (this list may include false if the conditions for its inclusion hold).

4This is owing to the fact that, in all of the causal rules p[1]=v ⇐ p[1]=v ∧ F which have
default conditions for p[1], the components F are identical (in fact, they are empty). Where
the components F differ, all possible orderings of the rules may be needed.

152 Chapter 5. C+ and Model Checking

Already bound is a list of the causal rules of ΓD
1 , to Rules.

For each constant c of the action description, we first remove from Rules
those causal rules which govern the default and inertial behaviour of c. These
are the rules which have the form

c[0]=v ⇐ c[0]=v ∧ F

or
c[1]=v ⇐ c[1]=v ∧ F

(assuming that the causal rules have been normalized so that their bodies are
conjunctions of atoms or >, and that an appropriate ordering has been placed
on the conjuncts). The first kind of rule, with c[0]=v in the head, is a default
condition on the value of c; it has the effect of making c take the value v by
default, when the additional conditions F are true. The second kind of rule
may also state a default value of c (in the state succeeding a transition), or it
may, if the atom c[0]=v is one of the conjuncts in F , impose a condition of
inertia on c=v (again, supposing any other conjuncts in F are true). Inertia
is thus a special kind of default: default persistence. The default rules with
c[0]=v in the head are bound to DefRules0, and those with c[0]=v in the head
to DefRules1. Now the SMV clauses determining the init and next values
of c can be written—for both there is a union of case expressions, one for
each permutation of the laws in DefLaws0 (for init) and DefLaws1 (for next).
Within each case clause, the non-default rules from Rules for the constant c
are written first, then the particular ordering of defaults.

5.3.3 Queries

When the ASSIGN declaration has been written, it remains to translate the
queries which may have been passed, together with the C+ action description,
to our algorithm. These queries may be either in the standard query language of
CCalc (see Section 2.1.8), in which case they have the form of a triple (L, T,N),
with

• L ∈ N a unique identifier;

• T as [tmin, tmax], where this denotes an interval of N and tmin 6 tmax, or
T is [t,∞), t ∈ N;

• A as a set of atoms c[i]=v, where i ∈ T , and if c ∈ σa and T = [tmin, tmax],
then i < tmax; or else i is max and c ∈ σf ;

or else they may be written in one of the temporal logics which NuSMV accepts
as input specifications. If the query is of the latter type, it can straightforwardly
be written to the SMV file, with the exception that when we have relied on
the state variable false to determine the correct behaviour of the finite state
machine, the query becomes

(G ¬false)→ ¬F,

where F is the original formula of temporal logic.
If the query is in CCalc’s standard query language, it needs to be translated

into temporal logic: we use LTL as it affords an easy translation scheme. Thus

5.3. Second Implementation 153

consider some query (L, T,N), and suppose that atoms with the same time
stamp have been conjoined; thus N will have the form

{F1[t1], . . . , Fn[tn], Fmax[max]}

with ti ∈ N for all i such that 1 6 i 6 n. We will permit, as a shorthand,
expressions Xn to denote n occurrences of the temporal operator X: thus (X2 F)
is true of a path (s0, s1, . . .) when F is true of (s2, s3, . . .). The query A above
is accordingly translated into the formula F :

(Xt1 F1) ∧ · · · ∧ (Xtn Fn) ∧ (Xtmin (F Fmax)).

The initial series of conjuncts here ensure that the formulas Fi, where i is a
number and not max, are true at the correct distances along a run. For the
formula Fmax which must be true at the final state sm of a run, we must ensure
that m > max{tmin, tn}. m should be greater than or equal to tmin so that we
respect the minimum bound on the length of runs which the user has supplied;
and m must be greater than or equal to tn to ensure that Fmax is not satisfied
somewhere in the middle of a run. Where the interval T of the original query
is [tmin,∞), no further work needs to be done; if the interval is closed, then
we can impose an upper bound on the length of runs to be considered by a
command-line switch when operating NuSMV.

Of course, queries can be passed to NuSMV directly, expressed in any of the
temporal logics which that model-checker accepts as input; in this case, care
must be taken to ensure that where a state variable false has been included
as part of the SMV clauses, NuSMV is directed to consider those runs through
the FSM along which false is never true.

5.3.4 Remarks

All of the above has been implemented in Prolog and, just as with the first
method for model-checking with C+, runs successfully alongside the normal
operations of CCalc.

The details of the second approach which we have just given, in Section 5.3.2,
are somewhat informal. Clearly it would be desirable to present the algorithm
for finding equivalents, in SMV, of restricted C+ action descriptions in more
rigorous detail. Further, although the method is intuitively correct and has
confirmed this intuition in all examples on which we have checked it, it would
be much better to have a proof of the soundness of our approach, in the form of
a theorem stating that runs of the action description correspond to runs (where
false is not true) through the finite state machine of the SMV code. One
reason we have been prevented from proving such a theorem is the inherent
complexity of the algorithm for generating SMV code, which also results in very
complex SMV programs. Yet perhaps the main reason is that the semantics
of the SMV language are not very clearly defined in McMillan’s Ph.D. thesis
[McM93], where the language is introduced. In particular, not all of the con-
structs of the language we make use of in our files are given semantics, and so
proving the correctness of our second algorithm would first involve an involved
reconstruction of the meaning of SMV expressions.

The difficulty involved in achieving certain confidence in the correctness of
this second implementation was one of the factors which prompted us to try

154 Chapter 5. C+ and Model Checking

a third approach where, as we will see, knowledge of the correctness of the
procedure is more forthcoming.

5.4 Third Implementation

The second way of adapting CCalc to the purposes of model-checking, pre-
sented in the previous sections, suffers from a significant limitation: it cannot
cope, even in principle, with all classes of C+ action description. As has been
described, action descriptions whose atoms exhibit a dependency loop through
static conditions cannot be translated to SMV under this scheme. In practice
many of the action descriptions which we encounter and which we wish to reason
about do not have this form of unfortunate dependency. We fare worse with
the third kind of limitation, that relating to constants which are not caused to
have a value in the causal theories ΓD

0 and ΓD
1 , as these forms of action descrip-

tion have been, in our experience, more common; we see no reason to suppose
that our experience here has been unusual and unrepresentative. Thus there is
a good reason for trying to find ways of sidestepping these obstacles, to look
for alternative correlations between action descriptions and SMV programs—in
addition to the independent interest of alternative implementations generally.
Further, as has been said, we wished to make it easier to verify that a finite
state machine encoding the same behaviour as the labelled transition system of
C+ is produced.

In this section we present the last of our approaches. It is similar to the
second, in that it takes an action description in C+, together with queries both
in CCalc’s standard query language or LTL, and outputs SMV code which can
immediately be passed to NuSMV. However, this third implementation copes
with all forms of action description. Broadly, it finds all states and transitions
of the system, and then writes a representation of this information in SMV.

As has repeatedly been stated, the states of a transition system defined by
a C+ action description D are simply the models of ΓD

0 , and the transitions of
the system are in one-to-one correspondence with the models of ΓD

1 , from which
the transitions may be extracted very easily. For models of ΓD

1 have the form
s[0] ∪ e[0] ∪ s′[1] for some s, s′ ∈ I(σf) and e ∈ σa, and (s, e, s′) is, for such a
model, a transition of the system. Thus, we may use CCalc to find all states
and transitions for D by finding all models of, respectively, ΓD

0 and ΓD
1 .

The SMV code we produce will have two state variables, state id and ac-
tion id. Let {s0, . . . , sn} be the set of states of an action description D. The
state variable state id will take values from the set of atoms {s0, . . . , sn} (we use
the same expressions to denote both atoms of the SMV code and interpretations
of I(σf)). We will say that the labels of an action description D are the set

{e | ∃s, s′ ∈ states(D) ((s, e, s′) ∈ trans(D))}

so that the labels of D are the union of all the s-labels, for all states s of the
transition system. If {a0, . . . , am} is the set of labels of D, then the state variable
action id will take values from the set of atoms (same polysemy) {a0, . . . , am}.
For example, the simple action description shown in Figure 5.1, when treated
by the third model-checking algorithm, yields code which begins as follows:

MODULE main

5.4. Third Implementation 155

VAR

state_id: {s0,s1,s2};
action_id: {a0,a1};

This is because there are three states in the action description—specifically,
{p, q}, {¬p,¬q} and {¬p, q}—and two types of transition—being {a} and {¬a}.

We use a DEFINE declaration in the SMV program to encode the interpre-
tation of each fluent and atom constant in each state or transition label. New
variables are introduced corresponding to each constant of the signature σ of
the C+ action description, and the values of those constants are defined in terms
of the value of state id (for variables corresponding to fluent constants) and ac-
tion id (for variables corresponding to action constants). Here is the relevant
declaration for the example of the last paragraph:

DEFINE

p :=
case
state_id=s0: 1;
1: 0;

esac;
q :=
case
state_id=s0
| state_id=s2: 1;

1: 0;
esac;

a :=
case
action_id=a1: 1;
1: 0;

esac;

As can be seen, the DEFINE declaration has been divided into clauses, each of
which governs the interpretation of a constant from the original signature σ of
the C+ action description. The fluent constants come first, in a block, followed
by the action constants. The definitions in the block of SMV code make it clear
that, in the current instance, the state {p, q} is to be associated with the value
s0 of state id, and {¬p,¬q} and {¬p, q} with the values s1 and s2 respectively.
The actions are treated in similar fashion. The utility of DEFINE declarations
should be obvious: they enable us to make queries, to model-check, using the
fluent and action constants of our original action description, rather than in
terms of our new state variables state id and action id.

Owing to the conventions operant on the SMV language, we must sometimes
make slight, inessential alterations in the form which our constants and their
values take in these DEFINE declarations. Brackets are typically replaced by un-
derscores, and some values for constants are replaced by numerals, as described
in Section 5.3.2. Where substitutions of the latter type are made, they are noted
in the SMV code, as comments, and also on the command line.

156 Chapter 5. C+ and Model Checking

The next portion of the SMV program, after the variable declarations and
further definitions of constants, is the representation of the transition system;
this is mostly very straightforward. As we have included two state variables
state id and action id in the code, we can associate the next value of state id
with combinations of the values of state id and action id which refer to the
current state (of the FSM). Which associations and combinations to use can
be gleaned directly from information about the models of ΓD

1 . In the simple
example which we have been using, and which was depicted in Figure 5.1, the
s-transitions for the various states of the system are as follows:

{p, q} : ({p, q}, {¬a}, {p, q})
{¬p, q} : ({¬p, q}, {¬a}, {¬p, q})

({¬p, q}, {a}, {p, q})
{¬p,¬q} : ({¬p,¬q}, {¬a}, {¬p,¬q})

({¬p,¬q}, {a}, {p, q})

Accordingly, the TRANS declaration is:

TRANS

(state_id=s0 -> (action_id=a0 & next(state_id)=s0)) &
(state_id=s1 -> ((action_id=a0 & next(state_id)=s1)

| (action_id=a1 & next(state_id)=s0))) &
(state_id=s2 -> ((action_id=a0 & next(state_id)=s2)

| (action_id=a1 & next(state_id)=s0)))

For each member s of states(D), we find all actions e and states s′ such that
s[0] ∪ e[0] ∪ s′[1] is a model of ΓD

1 . If there are no such actions and states (the
case where there are no outgoing transitions from state s), we include a clause

(state_id=s -> next(state_id)=s0 & ! next(state_id)=s0)

in the TRANS declaration, which will ensure that there is no outgoing edge from
the node s in the FSM. (Note that there is no difficulty in representing non-
determinism in the action description by this means.)

(The following peculiarity of SMV ought to be noted. Suppose that for a
given action description D, the set of labels—the set of all interpretations of
I(σa) which occur in transitions—is E. It may happen that for a given state s
some, but not all members of E are amongst the s-labels. In that case there
will be at least one clause of the form

(state_id=s -> (action_id=a & next(state_id)=s0))

in the TRANS declaration. Now, if e∗ is amongst the members of E which are not
s-labels, then the interpretation of the SMV code requires that the state (s, e∗)
have no outgoing edges. In other words, since there has been no reference to
e∗ in that part of the TRANS declaration governing the behaviour of the system
from state s, it is assumed, by default, that transitions from (s, e∗) have been
ruled out. Yet compare this with the case where there is no clause whatsoever
in the TRANS declaration which describes the behaviour of our system when it
starts in state s. In that case, it is assumed that the system may move into any
state.—This is the rationale for our inclusion of the clause

5.4. Third Implementation 157

(state_id=s -> next(state_id)=s0 & ! next(state_id)=s0)

when the state s cannot make any transitions.)
The final part of the SMV program which we generate from the C+ action

description is a translation of the queries. This is precisely the same process as
was described for the second implementation.

It is straightforward to program this way of depicting transition systems in
SMV, and as with our previous two implementations we have written code which
runs alongside CCalc, making use of its predicates to generate the models of
ΓD

0 and ΓD
1 which encode the sets of states and, respectively, transitions. As

might be expected, the structure of the algorithm which generates the SMV
representation of the transition system, in terms of the state variables state id
and action id, is very much more perspicuous than the method described for
our second implementation in Section 5.3.2.

5.5 Comparison

In this section we will comment on the advantages and disadvantages of the
three different approaches we have taken to connecting C+ to model-checking.

The first approach is the least promising. Repeated experiments with many
different domains expressed as action descriptions have shown that the trans-
lation of a temporal-logic specification in LTL into clausal form, in line with
the scheme given for bounded model-checking in Section 2.5.1, tends to produce
formulas of great length and complexity. Even when use is made of CCalc’s
built-in optimization techniques for the translation of well-formed formulas of
propositional logic into the conjunctive normal form which SAT-solvers require,
the process frequently breaks down, exhausting Prolog’s memory. The limi-
tation is severe, as the cardinality of the action description, its signature or the
length of the run specified through the transition system do not not need to
be large, or the query in LTL very complex, for the translation procedure to
cease functioning. Even where the translation of the query succeeds, an original
formula in LTL will result in clauses of CNF which each SAT-solver we have
used takes prohibitively long to solve.

As a consequence of the way in which [[M]]k is represented by the clauses
CCalc generates for the completion of ΓD

1 , the first implementation does cope
with any action description of C+; this is clearly a point in its favour. Currently,
however, we are somewhat limited in the language we can use to specify prop-
erties for which we wish to model-check; we have only introduced a translation-
scheme for LTL, whereas the interfaces to NuSMV which our second and third
implementations provide allow us to check for any properties expressible in lan-
guages which that model-checker accepts: significantly, in CTL additionally to
LTL. Part of this limitation could be lifted, to accommodate ACTL (the univer-
sal fragment of CTL); the authors of [PWZ02] adapt bounded model-checking
to cope with this temporal logic. Yet even if that adaptation were to be imple-
mented, we would still not have the ability to verify properties expressed in the
full branching-time logic of CTL.

The second approach does not require statements of temporal logic to be
translated into CNF; as the algorithm produces SMV code which expresses the
behaviour of the system we are modelling, we may specify the properties the

158 Chapter 5. C+ and Model Checking

system should fulfil in any temporal logic accepted by NuSMV. In order to
translate causal laws of C+ action descriptions into SMV code, we have had
to impose three restrictions on the form and interactions of those causal laws:
the first, to definite action descriptions, must also be made with the first and
third approaches, and so cannot count as an advantage of the second. The sec-
ond restriction has also not, in practice, presented problems, or prevented us
from working with any action descriptions. Yet the third is more problematic:
whilst action descriptions which do not satisfy it are uncommon, they are not
unknown. Another failing of the second method is the difficulty of establishing
its correctness. The most we have been able to do towards achieving this is run-
ning all three implementations on the same action description, and comparing
the results of different queries posed in each; where the query is of the standard
form accepted by CCalc’s native query language, we also have the results of
CCalc as an independent verification. Experiments conducted in this way have
always given the same results, which counts as a very good indication that the
translation algorithm employed in the second approach is correct. This is, of
course, far from being a proof of correctness of the algorithm.

The third approach was prompted by the desire to be able to relax the re-
strictions on the form of action description which we were forced to impose
in the second implementation, whilst retaining the central role of an external
model-checker, enabling us to make full use of the expressivity of the two tem-
poral logics LTL and CTL. It also provides an easy method for establishing
correctness, since we have a correct method for generating the transition sys-
tem defined by a C+ action description, and the encoding of that transition
system in SMV is direct and transparent. (The generation of the transition
system for the C+ action description is, of course, by CCalc.)

Whilst the first implementation soon becomes unusable for large action de-
scriptions or complex queries, it performs well for small domains and short
formulas of LTL. The second implementation outputs SMV programs repre-
senting finite state machines very quickly, even for large domains, and queries,
of course, are produced almost instantaneously: LTL formulas do not need to be
translated, and the translation scheme for queries in CCalc’s standard input
language is very efficient. In the case of the third implementation, the limiting
factor for producing SMV code is, of course, the speed with which CCalc and
any external SAT-solver it employs can find models of ΓD

0 and ΓD
1 : those models

which encode the states and transition of the system. For large, complicated
domains, this can take some time, although it is to be borne in mind that this
process need only be completed once for each action description, after which
any number of queries can be posed and answered using NuSMV.

We conducted experiments using sample domains such as the Zoo World and
Farmyard (see Sections 3.9 and 2.1.7 respectively), and other domains whose
representations satisfy the restrictions imposed for our second implementation.
NuSMV showed no significant difference in the time taken to verify properties
on FSMs produced by the second and third implementations. Both of these
outperformed the first implementation. The second and third implementations
also performed slightly better than CCalc for queries which are expressible in
all three cases. In further work we would like to study how our programs cope
with much larger domains, in order to attain a clearer view of the advantages
and disadvantages of our three implementations.

We have not included the Prolog code for our three implementations as an

5.5. Comparison 159

appendix to this thesis, as the file is too large (c. 3800 lines). It is available at
http://www.doc.ic.ac.uk/~rac101/code/ccmc/.

160 Chapter 5. C+ and Model Checking

Chapter 6

Conclusion

This thesis has focused on the action language C+ as a representative of a large
family of action languages, logical representations for reasoning about action and
change. It has followed two threads of investigation in relation to that action
language: that of efficiency, and that of expressivity (in particular, expressivity
in relation to temporal distance).

The starting-point of the the first part of the thesis was the intuition that
much needless computation was being performed in certain reasoning tasks using
the methods of CCalc, or stable model generators, both of which must con-
struct entire models when answering a query about a specific fluent constant at
a specific time. It is not always necessary to know everything about the entire
history of the system we are modelling. The insight that this comprehensive
knowledge is not necessary is something which the Event Calculus (when con-
sidered with top-down, goal-directed queries) enshrines, and our question was
thus: can an Event Calculus style of computation be employed when answering
queries of C+ action domains?

In Chapter 3, we presented axioms of a logic program which, when combined
with a suitable representation of an action description and specific details about
an initial state and narrative of actions through the system, enabled queries
to be answered in a goal-directed way, concentrated on causative information
relevant to the fluent’s value. The main result of the chapter demonstrated the
correctness of our approach: stable models of this logic program uniquely define
runs through the transition system produced by C+’s normal semantics.

A number of restrictions had to be made on the form of action descriptions,
including one prohibiting them from exhibiting what we called a dependence
amongst fluent constants. Moreover, we have not shown that our goal-directed
way of answering queries works with non-deterministic action descriptions How-
ever, the class of action descriptions we can work with is large and diverse. We
illustrated this fact by formalizing a more complex variant of the Yale Shooting
Problem, a standard, long-established domain from the literature on reasoning
about action and change. We also formalized a variant of the Zoo World, and
described how the underlying Prolog of our implementation could be used to
improve the representation of domains.

When working with the Event Calculus, there are two stages to reasoning
about domains. The first is to check an input domain description, initial state,
and narrative of events for consistency, and in the second one proceeds to answer

161

162 Chapter 6. Conclusion

the queries one wants answered. In C+ when working with CCalc, these two
stages are unified: both occur when one finds a model of the underlying, causal-
theoretic representation. For us, however, the introduction of computations
in the style of the Event Calculus has teased apart these two tasks, and we
must go through a separate process of consistency-checking, before the query
evaluator of EC+ can be applied. The way in which we execute these consistency
checks was described in the text, together with methods for making it more
streamlined; these methods were illustrated when the Zoo World was discussed
in later sections.

We also conducted a number of experiments on elaborations of the Farmyard
domain, in order to compare the performance of our implementation to that of
CCalc. We found that, even when we asked our system to produce an entire
narrative of events in the way CCalc does of necessity, our system performs
better. Finally in Chapter 3, we proved a number of theorems relating C+ and
EC+ to a common variant of the Event Calculus expressed as a logic program.

The results we have attained in our work on EC+ have been very encouraging.
In the theoretical component of our investigation, we have found what might
be characterized as a mid-point (perhaps one of many) between C+ and the
Event Calculus: one which embodies the possibilities for styles of computation
of the latter, whilst retaining many of the expressive advantages, and the very
useful graphical semantics, of the former. More practically, the system we built
performs well and will, we hope, be able to be used in many of the contexts
previously occupied by the Event Calculus—with all the benefits attendant on
the possession of an easily-definable semantics of labelled transition systems.

In Chapter 4, by contrast, we were concerned to make use of the expressivity
afforded by C+’s underlying formalism of causal theories, to let us express much
more easily, concisely and efficiently, temporally distant interactions between
fluents and actions. After a motivating example, we showed how this could
be achieved quite straightforwardly by broadening the syntax of causal laws in
C+, and shows how the new causal laws should be converted, parameterized by
integer-time, into causal rules for solution by a system such as CCalc.

The more involved part of this stage of the work was an investigation into
what becomes of the transition systems defined by action descriptions. These
graphical correlates of causal laws are at the heart of C+’s utility for us, and we
wanted to retain the property that runs through graphical systems defined by
action descriptions correspond to models of the relevant causal theory ΓD

t . Yet
this property failed when we first broadened the syntax of laws, and introduced
our λ operator. The solution was found by generalizing labelled transition
systems to run systems, which we defined and then showed, in Theorem 4.4
have the desired property: paths through the run system correspond to models
of the causal theory.

We went on to give several illustrations of our constructions, and concluded
the chapter by describing how C+timed, our name for the generalization of C+
we introduced, can be married to the deontic concepts of nC+ [SC06], producing
coloured run systems.

In Chapter 5 we remained concerned with questions of expressivity, but
moved our attention from the causal laws which define a system’s behaviour
to the query languages we use to answer questions about that behaviour. The
query language for C+ which can be used with CCalc is restricted in ways
we have found to be inconvenient: it allows reference to the truth of fluents

6.1. Further Work 163

only at specifically given times, so that it is impossible to ask, for instance,
whether something will be true eventually, given that such-and-such is true, or
this-and-that happens. Yet this sort of proposition is something which is very
easily represented in standard temporal logics such as the linear-time LTL, or
branching-time CTL. Model-checking is a procedure which takes a graphical
representation of a system and verifies whether or not a formula of temporal
logic holds in that system, and we wished to exploit this, and the graphical
semantics of C+, to apply model-checking methods to this action language. To
this end, we proposed, described, and implemented three different methods of
model-checking C+ action descriptions. The first supplemented predicates in
CCalc by procedures for translating a formula of LTL into conjunctive normal
form. The second implementation produced a program of SMV (the input
language, defining a finite state machine, for the model-checker NuSMV) which
describes the behaviour of the system on a constant-by-constant basis, in an
attempt to find close correlates of causal laws in the original action description.
The third implementation uses CCalc to construct a complete representation of
the labelled transition system defined by the input action description, and then
also encodes this transition system, more directly, in SMV. We gave details of all
three approaches, and described the limitations, advantages and disadvantages
of each.

6.1 Further Work

There are a number of directions for future work, beginning in this thesis, which
we would like to pursue.

We are interested in continuing our work on EC+ (Chapter 3) by examining
ways in which the restrictions we placed on the form of action descriptions may
be relaxed. At the moment, we insist on exogeneity for all action constants of the
signature, and no other action dynamic laws may be included in EC+. This is
probably too restrictive, and initial attempts at permitting action dynamic laws,
in certain circumstances, have proved encouraging. There are also ways in which
we ought to be able to allow more kinds of fluent dynamic law; at the moment,
the component G of a law F if G after H can only ever be >, or identical to F
(the latter, in the case of laws of inertia). This is certainly too restrictive, and
it seems likely that allowing conjunctions to form the components G is possible,
as long as a condition similar to that of the absence of dependence, which we
introduced for static causal laws, is satisfied.

We would also like to investigate the possibility of merging nC+ and EC+, to
use an Event Calculus style of computation in reasoning about deontic domains.
The difficulty here is likely to be a successful incorporation of the green-green-
green constraint. We have already had promising results in incorporating the
other part of the original (C+)++ language presented in [Ser04]—that involving
the representation of counts as relations—into our computational framework for
EC+. Both of these extensions, for deontic concepts and ‘counts-as’, are steps
towards the greater goal of making action languages such as C+ more suitable
for certain sorts of reasoning task involving multi-agent systems.
EC+ can be seen as a marriage of the Event Calculus and C+, and we are also

interested in exploring the possibility of other forms of intermediary formalisms,
inspired by the execution style of the former, and possessing a graphical seman-

164 Chapter 6. Conclusion

tics similar to the latter. One prominent and useful characteristic of the Event
Calculus is the way that the computation of a fluent’s value can proceed by
jumping back from the current time to a previous time greater than one time-
step distant, where an action occurred which may have affected the value of the
fluent. In EC+, the analogous process must step back long the time-line, pass-
ing through each intervening time-step. We are interested in seeing whether the
axioms of EC+ can be adapted to make this stepwise consideration of histories
unnecessary. This work is in a very preliminary stage.

In relation to our work on ‘distant causation’ and C+timed, we feel our work
is more self-contained, though there are several unanswered questions we would
like to examine. Many of the domains we are enabled to represent more easily in
C+ do not involve the full expressivity afforded us by the λ operator; often they
make use only of the ability causally to relate actions which are one time-step
distant from each other. (This was the case with the ‘Reagan and Gorbachev’
example we gave in Section 4.3.7.) We would like to see whether the run systems
which are generated by this subset of action descriptions of C+timed can be
generated more easily, and to investigate their properties.

Chapter 5 suggests a number of directions for future work. As discussed in
Section 5.5, we would like to apply our three implementations to a number of
large domains, in order to enable a better appreciation of the different perfor-
mances of each. We also have ideas for other approaches to connecting action
languages and model-checking, which instead of producing SMV code, which
NuSMV would then compile down into a propositional formula (for BMC) or a
native representation in OBDDs (for symbolic model checking), would move di-
rectly to the OBDD representation itself. This work is currently at the planning
stage only.

Bibliography

[AEL+04] Varol Akman, Selim T. Erdogan, Joohyung Lee, Vladimir Lifschitz,
and Hudson Turner. Representing the zoo world and the traffic
world in the language of the causal calculator. Artificial Intelligence,
153(1-2):105–140, 2004.

[BAPM83] Mordechai Ben-Ari, Amir Pnueli, and Zohar Manna. The temporal
logic of branching time. Acta Informatica, 20:207–226, 1983.

[BCC+03] Armin Biere, Alessandro Cimatti, Edmund Clarke, Ofer Strichman,
and Yunshan Zhu. Bounded Model Checking. In Advances in Com-
puters. Academic Press, 2003.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan
Zhu. Symbolic Model Checking without BDDs. Lecture Notes in
Computer Science, 1579:193–207, 1999.

[Bel87] M. Belzer. Legal reasoning in 3-d. In Proceedings of the first interna-
tional conference on Artificial intelligence and law, pages 155–163.
ACM Press, 1987.

[BG04] Brandon Bennett and Antony Galton. A unifying semantics for time
and events. Artificial Intelligence, 153(1-2):13–48, 2004.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis
of synchronization skeletons using branching-time temporal logic.
In Dexter Kozen, editor, Logic of Programs, volume 131 of Lecture
Notes in Computer Science, pages 52–71. Springer, 1981.

[CGP99] Edmund Clarke, Orna Grumberg, and Doron Peled. Model Check-
ing. The MIT Press, Cambridge, Massachusetts, 1999.

[Cla78] Keith Clark. Negation as failure. In H. Gallaire and J. Minker, edi-
tors, Logic and Databases, pages 293–322, New York, 1978. Plenum
Press.

[CS01] E.M. Clarke and H. Schlingloff. Model checking. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume II,
chapter 24, pages 1635–1790. Elsevier Science, 2001.

[CS05] Robert Craven and Marek J. Sergot. Distant causation in C+. Studia
Logica, 79(1):73–96, 2005.

165

166 BIBLIOGRAPHY

[DGKK98] Patrick Doherty, Joakim Gustafsson, Lars Karlsson, and Jonas
Kvarnström. Tal: Temporal action logics language specification and
tutorial. Electronic Transactions in Artificial Intelligence, 2:273–
306, 1998.

[DPP04] Agostino Dovier, Carla Piazza, and Alberto Policriti. An efficient
algorithm for computing bisimulation equivalence. Theoretical Com-
puter Science, 311(1-3):221–256, 2004.

[dSA95] Paulo Jorge de Sousa Azevedo. Techniques for Preventing Recom-
putation in Logic Programs. PhD in Computing, Department of
Computing, Imperial College London, 1995.

[EL06] Selim T. Erdogan and Vladimir Lifschitz. Actions as special cases.
In Patrick Doherty, John Mylopoulos, and Christopher A. Welty,
editors, KR, pages 377–388. AAAI Press, 2006.

[FL05] Alberto Finzi and Thomas Lukasiewicz. Game-theoretic reasoning
about actions in nonmonotonic causal theories. In Chitta Baral,
Gianluigi Greco, Nicola Leone, and Giorgio Terracina, editors, LP-
NMR, volume 3662 of Lecture Notes in Computer Science, pages
185–197. Springer, 2005.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics
for logic programming. In Robert A. Kowalski and Kenneth Bowen,
editors, Proceedings of the Fifth International Conference on Logic
Programming, pages 1070–1080, Cambridge, Massachusetts, 1988.
The MIT Press.

[GL91] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic
programs and disjunctive databases. New Generation Computing,
9(3/4):365–386, 1991.

[GL93] Michael Gelfond and Vladimir Lifschitz. Representing action and
change by logic programs. Journal of Logic Programming, 17:301–
321, 1993.

[GL98] Michael Gelfond and Vladimir Lifschitz. Action languages. Elec-
tronic Transactions on AI, 3, 1998.

[GLL+04] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner.
Nonmonotonic causal theories. Artificial Intelligence, 153:49–104,
2004.

[HM87] Steve Hanks and Drew McDermott. Nonmonotonic logic and tem-
poral projection. Artificial Intelligence, 33(3):379–412, 1987.

[Hog90] Christopher John Hogger. Essentials of Logic Programming. Oxford
University Press, 1990.

[KM97a] Antonis C. Kakas and Rob Miller. Reasoning about actions, narra-
tives and ramification. Electron. Trans. Artif. Intell., 1:39–72, 1997.

BIBLIOGRAPHY 167

[KM97b] Antonis C. Kakas and Rob Miller. A simple declarative language
for describing narratives with actions. The Journal of Logic Pro-
gramming, 31(1-3):157–200, 1997.

[KMT01] Antonis C. Kakas, Rob Miller, and Francesca Toni. E-RES: Rea-
soning about actions, events and observations. In Thomas Eiter,
Wolfgang Faber, and Miroslaw Truszczynski, editors, LPNMR, vol-
ume 2173 of Lecture Notes in Computer Science, pages 254–266.
Springer, 2001.

[KS86] R.A. Kowalski and M.J. Sergot. A logic-based calculus of events.
New Generation Computing, 4:67–95, 1986.

[Lif94] Lifschitz, V. Circumscription. In Handbook of Logic in Artificial
Intelligence and Logic Programming, Volume 3, volume 3, pages
297–352. Oxford University Press, 1994.

[Llo87] John Lloyd. Foundations of Logic Programming. Springer, 2 edition,
1987.

[LR06] Vladimir Lifschitz and Wanwan Ren. A modular action description
language. In AAAI. AAAI Press, 2006.

[McC80] McCarthy, J. Circumscription - A form of non-monotonic reasoning.
Artificial Intelligence, 13:27–39, 1980.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Pub-
lishers, Norwell Massachusetts, 1993.

[MH69] J. McCarthy and P.J. Hayes. Some philosophical problems from the
standpoint of artificial intelligence. In B. Meltzer and D. Michie, ed-
itors, Machine Intelligence, 4, pages 463–502. Edinburgh University
Press, Edinburgh, 1969.

[MS02] Rob Miller and Murray Shanahan. Some alternative formulations
of the event calculus. In Computational Logic: Logic Programming
and Beyond, Essays in Honour of Robert A. Kowalski, Part II, pages
452–490. Springer-Verlag, 2002.

[MT97] Norman McCain and Hudson Turner. Causal theories of action and
change. In Howard Shrobe and Ted Senator, editors, Proceedings of
the Thirteenth National Conference on Artificial Intelligence and the
Eighth Innovative Applications of Artificial Intelligence Conference,
pages 460–465, Menlo Park, California, 1997. AAAI Press.

[Mue06a] Erik T. Mueller. Commonsense Reasoning. Morgan Kaufmann,
2006.

[Mue06b] Erik T. Mueller. Event calculus and temporal action logics com-
pared. Artificial Intelligence, 170(11):1017–1029, 2006.

[Pnu81] Amir Pnueli. The temporal semantics of concurrent programs.
Theor. Comput. Sci., 13:45–60, 1981.

168 BIBLIOGRAPHY

[PWZ02] Wojciech Penczek, Bozena Wozna, and Andrzej Zbrzezny. Bounded
Model Checking for the Universal Fragment of CTL. Fundamenta
Informaticae, 51(1-2):135–156, 2002.

[Rei80] Raymond Reiter. A logic for default reasoning. Artificial Intelli-
gence, 13:81–132, 1980.

[SC05a] Marek Sergot and Robert Craven. Logical Properties of Nonmono-
tonic Causal Theories and the Action Language C+. Technical Re-
port 2005/5, Department of Computing, Imperial College London,
2005.

[SC05b] Marek Sergot and Robert Craven. Some logical properties of non-
monotonic causal theories. In Chitta Baral, Gianluigi Greco, Nicola
Leone, and Giorgio Terracina, editors, Logic Programming and Non-
monotonic Reasoning, volume 3662 of Lecture Notes in Computer
Science, pages 198–210. Springer, 2005.

[SC06] Marek Sergot and Robert Craven. The deontic component of action
language nC+. In Lou Goble and John-Jules Ch. Meyer, editors,
DEON, volume 4048 of Lecture Notes in Computer Science, pages
222–237. Springer, 2006.

[Ser04] Marek Sergot. (C/C+)++: An action language for modelling norms
and institutions. Technical Report 2004/8, Department of Comput-
ing, Imperial College London, 2004.

[Sha90] Murray Shanahan. Representing continuous change in the event
calculus. In ECAI, pages 598–603, 1990.

[Sha95] Murray Shanahan. A Circumscriptive Calculus of Events. Artificial
Intelligence, 77:249–284, 1995.

[Sha97] Murray Shanahan. Solving the Frame Problem. The MIT Press,
1997.

[Sha99] Murray Shanahan. The event calculus explained. In Artificial Intel-
ligence Today, Lecture Notes in Computer Science, pages 409–430.
Springer, 1999.

[Sha00] Murray Shanahan. An Abductive Event Calculus Planner. The
Journal of Logic Programming, 44:207–239, 2000.

[vEK76] M. H. van Emden and R. A. Kowalski. The semantics of logic as a
programming language. Journal of the ACM, 23(4):733–742, 1976.

Appendix A

The Farmyard Resurrection
domain

Here is the Prolog source file used for the EC+ representation of our ‘Farmyard
Resurrection’ domain. It is possible to make the specification of the signature
(in particular, the definition of domain/2) much more concise, but we have
chosen to define the predicates at greater length for reasons of clarity.

% ------------ fluent constants

flu_constant(alive(C)) :-
character(C).

flu_constant(loaded).
flu_constant(loc(C)) :-
character(C).

flu_constant(smiling(C)) :-
character(C).

flu_constant(target).

% ------------ action constants

act_constant(aim).
act_constant(miracle(C)) :-
character(C).

act_constant(load).
act_constant(shoot).
act_constant(walk(C)) :-
character(C).

% ------------ domains for fluent constants

domain(alive(_), V) :-
boolean(V).

domain(loaded, V) :-
boolean(V).

169

170 Appendix A. The Farmyard Resurrection domain

domain(loc(_), V) :-
location(V).

domain(smiling(C)) :-
boolean(V).

domain(target, V) :-
(location(V) ; V = none).

% ------------ domains for action constants

domain(aim, V) :-
(location(V) ; V = ff).

domain(miracle(_)) :-
boolean(V).

domain(load, V) :-
boolean(V).

domain(shoot, V) :-
boolean(V).

domain(walk(_), V) :-
(location(V) ; V = ff).

% ------------ parameters for the signature

character(bill).
character(turkey).

location(barn).
location(house).
location(field).

boolean(tt).
boolean(ff).

% ------------ inertia

all_inertial.

% ------------ static causal laws

causes(alive(C)=tt, [smiling(C)=tt]).
causes(smiling(C)=ff, [alive(C)=ff]).

% ------------ fluent dynamic causal laws

causes(alive(X)=ff, [shoot=tt], [loaded=tt,
target=L,
loc(X)=L]).

causes(loaded=ff, [shoot=tt], [loaded=tt]).
causes(loaded=tt, [load=tt], []).
causes(loc(C)=L, [walk(C)=L], []) :- location(L).
causes(smiling(X)=tt, [miracle(X)=tt], [alive(X)=ff]).

171

causes(target=L, [aim=L], []) :- location(L).
causes(target=none, [load=tt], []).

% ------------ nonexecutability laws

nonexecutable([walk(C)=L], [loc(C)=L]) :- location(L).
nonexecutable([walk(C)=L], [alive(C)=ff]) :- location(L).

% ------------ initial state

init(alive(C)=tt) :- character(C).
init(loaded=ff).
init(loc(bill)=house).
init(loc(turkey)=barn).
init(smiling(bill)=ff).
init(smiling(turkey)=tt).
init(target=none).

% ------------ narrative of events

happens(load=tt, 0).
happens(aim=field, 1).
happens(walk(bill)=field, 2).
happens(shoot=tt, 3).
happens(walk(turkey)=house, 4).
happens(load=tt, 6).
happens(walk(turkey)=field, 6).
happens(walk(turkey)=barn, 7).
happens(aim=barn, 7).
happens(miracle(bill)=tt, 8).
happens(shoot=tt, 9).
happens(walk(bill)=house, 10).
happens(miracle(turkey)=tt, 11).

172 Appendix A. The Farmyard Resurrection domain

Appendix B

The Zoo World

This is the action description for our formalization of the Zoo World, as pre-
sented in Section 3.9 of the thesis. We here present the EC+ representation as
Prolog source code.

B.1 Action Description

The source file is divided into three main sections. The first section represents
more general knowledge about the Zoo World, and the second section encodes
the details of specific examples. Thus, the first section includes causal laws
about what happens when animals move; the second section tells what the
details of a specific zoo are: the locations, animals, topology, and so on; and
the third section sets out the initial state and narrative of events. The action
description which forms the first section is parametric on the information about
zoo specifics which is contained in the second.

The first section is by far the largest. First, there is a specification of the
signature of Zoo World action descriptions.

% ------------ fluent constants

flu_constant(opened(G)) :-
gate(G).

flu_constant(accessible(P1,P2)) :-
position(P1),
position(P2),
neighbour(P1,P2).

flu_constant(pos(A)) :-
animal(A,_).

flu_constant(mounted(H)) :-
animal(H,human).

% ------------ action constants

act_constant(move(A)) :-
animal(A,_).

173

174 Appendix B. The Zoo World

act_constant(open(H,G)) :-
animal(H, human),
gate(G).

act_constant(close(H,G)) :-
animal(H, human),
gate(G).

act_constant(mount(H)) :-
animal(H, human).

act_constant(get_off(H,A)) :-
animal(H,human),
animal(A,_),
H \= A.

% ------------ domains for fluent constants

domain(opened(_), V) :-
boolean(V).

domain(accessible(_,_), V) :-
boolean(V).

domain(pos(_),P) :-
position(P).

domain(mounted(_),V) :-
(animal(V,_) ; V = ff).

% ------------ domains for action constants

domain(move(_),V) :-
(position(V) ; V = ff).

domain(open(_,_),V) :-
boolean(V).

domain(close(_,_),V) :-
boolean(V).

domain(mount(H),V) :-
((animal(V,_),V\=H) ; V = ff).

domain(get_off(_,_),V) :-
(position(V) ; V = ff).

The definitions of constants and their domains above depend both on some
more general knowledge (such as that, in the words of the original specification,
“[a]dult members of large species are large animals”), and also on more specific
knowledge about what animals there are in a given zoo. The general information
is given below.

% ------------ Boolean truth-values

boolean(tt).
boolean(ff).

% ------------ Other Predicates

B.1. Action Description 175

position(P) :-
loc(P,_).

neighbour(P1, P2) :-
neighbour(P1,P2,l).

neighbour(P1,P2,_) :-
sides(_,P1,P2).

neighbour(P1,P2,l) :-
neighbour(P2,P1,r).

neighbour(P1,P2,_) :-
nb(P1,P2).

adult(A) :-
animal(A,_),
\+ infant(A).

large_animal(A) :-
adult(A),
animal(A,S),
large_species(S).

small_animal(A) :-
animal(A,_),
\+ large_animal(A).

There now follow the causal laws of the action description: first a record of
which fluents are inertial, then static laws whose heads are not ⊥, then fluent
dynamic laws whose heads are not ⊥. (Recall that all action constants are
automatically deemed to be exogenous in our action descriptions; this does not
need to be represented explicitly.)

% ------------ Inertia

inertial(opened(_)=V) :-
boolean(V).

inertial(pos(_)=P) :-
position(P).

inertial(mounted(_)=_).

% ------------ Static Causal Laws (constants in head)

causes(accessible(P1,P2)=tt, []) :-
neighbour(P1,P2),
\+ sides(_,P1,P2),
\+ sides(_,P2,P1).

176 Appendix B. The Zoo World

causes(accessible(P1,P2)=tt, [opened(G)=tt]) :-
(sides(G,P1,P2) ; sides(G,P2,P1)).

causes(accessible(P1,P2)=ff, [opened(G)=ff]) :-
(sides(G,P1,P2) ; sides(G,P2,P1)).

causes(pos(H)=P, [mounted(H)=A,pos(A)=P]) :-
animal(A,_).

% ------------ Dynamic Causal Laws (constants in head)

causes(pos(A)=P, [move(A)=P], []) :-
position(P).

causes(opened(G)=tt, [open(_,G)=tt], []).
causes(opened(G)=ff, [close(_,G)=tt], []).
causes(pos(H)=P, [mount(H)=A,move(A)=P1], [pos(A)=P]) :-
position(P1).

causes(pos(H)=P, [get_off(H,A)=P,move(A)=ff], []) :-
position(P).

causes(mounted(H)=ff, [get_off(H,A)=P,move(A)=ff], []) :-
position(P).

causes(mounted(H)=A, [mount(H)=A,move(A)=ff], []) :-
animal(A,_).

Now, the causal laws which have ⊥ as their head, and which are used when we
check that the action description, initial state and narrative of events define a
run through the transition system the former alone determines. The knowledge
which gave rise to each constraint has been printed above it, as a comment; the
breakdown into individual statements is owed to [AEL+04]. We first give the
static, and then the fluent dynamic causal laws.

% ------------ Never Laws

% Two large animals can not occupy the same position,
% except if one of them rides on the other

% (case 1: neither are human)

never([pos(A1)=P,pos(A2)=P]) :-
large_animal(A1),
large_animal(A2),
A1 @< A2,
animal(A1,S1),
animal(A2,S2),
S1 \= human,
S2 \= human.

% (case 2: one is human)

never([pos(A1)=P,pos(A2)=P,mounted(A)=V]) :-
large_animal(A1),

B.1. Action Description 177

large_animal(A2),
A1 @< A2,
(animal(A1,human),
animal(A2,S),
S \= human,
A = A1,
domain(mounted(A),V),
V \= A2
;
animal(A2,human),
animal(A1,S),
S \= human,
A = A2,
domain(mounted(A),V),
V \= A1
).

% (case 3: both are human)

never([pos(A1)=P,pos(A2)=P,mounted(A1)=V1,mounted(A2)=V2]) :-
large_animal(A1),
large_animal(A2),
A1 @< A2,
animal(A1,human),
animal(A2,human),
domain(mounted(A1),V1),
domain(mounted(A2),V2),
V1 \= A2,
V2 \= A1.

% a human can only be mounted on a large animal

never([mounted(_)=A]) :-
small_animal(A).

% a large human cannot be mounted on a human
% (this we could do in the signature)

never([mounted(H1)=H2]) :-
large_animal(H1),
animal(H2,human),
animal(H1,human).

% an animal can be mounted by at most one human at a time

never([mounted(H1)=A,mounted(H2)=A]) :-
animal(H1,human),
animal(H2,human),
H1 \= H2,
animal(A,_).

178 Appendix B. The Zoo World

% a human cannot be mounted on a human who is mounted
% (should we insist H1, H2 are humans?)

never([mounted(H1)=H2,mounted(H2)=H3]) :-
animal(H3,_).

% ------------ Nonexecutable Laws

% In one unit of time, an animal can move to one of the positions
% accessible from its present one, or stay in the position
% here it is. Moves to non-accessible positions are
% never possible
% (This can be constrained by the following.)

nonexecutable([move(A)=P],[pos(A)=P1,accessible(P,P1)=ff]) :-
position(P).

nonexecutable([mount(H)=A],[pos(A)=P1,pos(H)=P2,
accessible(P1,P2)=ff]) :-

animal(A,_).
nonexecutable([get_off(H,A)=P1],[pos(A)=P2,

inaccessible(P1,P2)=ff]).

% A concurrent move where animal A moves into a position at the
% same time as animal B moves out of it, is only possible if
% at least one of A and B is a small animal.
% Exceptions for (failed) mount actions.

nonexecutable([move(A1)=P1,move(A2)=P2],[pos(A2)=P1]) :-
large_animal(A1),
large_animal(A2),
A1 \= A2,
neighbour(P1,P2).

% Two large animals cannot pass through a gate at the same time
% (neither in the same direction nor opposite directions)

nonexecutable([move(A1)=P1,move(A2)=P2],
[pos(A1)=P2,pos(A2)=P1]) :-

large_animal(A1),
large_animal(A2),
A1 @< A2,
(sides(_,P1,P2) ; sides(_,P2,P1)).

nonexecutable([move(A1)=P,move(A2)=P],[pos(A1)=P1,pos(A2)=P1]) :-
large_animal(A1),
large_animal(A2),
A1 @< A2,
(sides(_,P,P1) ; sides(_,P1,P)).

B.1. Action Description 179

% While a gate is closing, an animal cannot pass through it

nonexecutable([move(A)=P1,close(_,G)=tt],[pos(A)=P2]) :-
(sides(G,P1,P2) ; sides(G,P2,P1)).

% an animal can’t move to the position where it is now

nonexecutable([move(A)=P],[pos(A)=P]).

% a human riding an animal cannot perform the move action

nonexecutable([move(H)=P],[mounted(H)=A]) :-
animal(A,_),
position(P).

% a human cannot open a gate if he is not located at
% a position to the side of the gate

nonexecutable([open(H,G)=tt],[pos(H)=P]) :-
position(P),
\+ sides(G,P,_),
\+ sides(G,_,P).

% a human cannot open a gate if he is mounted on an animal

nonexecutable([open(H,_)=tt],[mounted(H)=A]) :-
animal(A,_).

% a human cannot open a gate if it is already opened

nonexecutable([open(H,G)=tt],[opened(G)=tt]).

% a human cannot close a gate if he is not located at
% a position to the side of the gate

nonexecutable([close(H,G)=tt],[pos(H)=P]) :-
position(P),
\+ sides(G,P,_),
\+ sides(G,_,P).

% a human cannot close a gate if he is mounted on an animal

nonexecutable([close(H,_)=tt],[mounted(H)=A]) :-
animal(A,_).

% a human cannot close a gate if it is already closed

nonexecutable([close(_,G)=tt],[opened(G)=ff]).

% a human already mounted cannot attempt to mount

180 Appendix B. The Zoo World

nonexecutable([mount(H)=A], [mounted(H)=A1]) :-
animal(A,_),
animal(A1,_).

% a human cannot attempt to mount an animal already mounted
% by a human
% (question of whether we should insist that H is a human)

nonexecutable([mount(H)=A], [mounted(H1)=A]) :-
animal(A,_).

% a human cannot attempt to mount an animal if
% the human is already mounted by a human
% (question of whether we should insist that H is a human)

nonexecutable([mount(H)=A], [mounted(H1)=H]) :-
animal(A,_).

% A human cannot attempt to mount a human who is mounted
% (this is covered by an earlier case)

% get_off cannot be performed by a human not riding an animal

nonexecutable([get_off(H,A)=P],[mounted(H)=X]) :-
animal(A,_),
position(P),
domain(mounted(H),X),
X \= A.

% a human cannot attempt to get_off to an inaccessible position

nonexecutable([get_off(_,A)=P],[pos(A)=P1,accessible(P,P1)=ff]).

We have included the details of a specific Zoo World domain, for illustrative
purposes. This is the zoo which was described in Section 3.9 of this thesis, and
whose transition system was depicted in Figure 3.8.

% ------------ Topology and Population
%
% (here we include facts:
% gate/1
% cage/1
% nb/2
% sides/3
% loc/2
% animal/2
% large_species/1
% infant/1)

B.2. Domain Constraints 181

gate(gate).

cage(cage).

sides(gate,1,2).

loc(1,cage).
loc(2,outside).

animal(ahab,human).
animal(moby,whale).

large_species(whale).
large_species(human).

Finally, the initial state and narrative of a (very short) sample run through the
system.

% ------------ Initial State

init(opened(gate)=ff).
init(accessible(P1,P2)=ff)
:- neighbour(P1,P2).

init(pos(moby)=2).
init(pos(ahab)=1).
init(mounted(ahab)=ff).

% ------------ Narrative

happens(open(ahab,gate)=tt, 1).
happens(mount(ahab)=moby, 2).
happens(move(moby)=1, 3).
happens(get_off(ahab,moby)=2, 4).
happens(close(ahab,gate)=tt, 5).

B.2 Domain Constraints

/*
*
* constraint(_) is true when something goes wrong.
*
*/

% each position is included in precisely one location
% (we can ensure this by construction)

182 Appendix B. The Zoo World

constraint(0) :-
position(P),
loc(P,L1),
loc(P,L2),
L1 \= L2.

% each position must have at least one neighbour

constraint(1) :-
position(P),
\+ neighbour(P,_).

% the neighbour relation is irreflexive

constraint(2) :-
neighbour(P,P).

% the neighbour relation is symmetric

constraint(3) :-
neighbour(P1,P2),
\+ neighbour(P2,P1).

% one location is the outside

constraint(4) :-
\+ loc(_,outside).

% all other locations are cages

constraint(5) :-
loc(_,L),
L \= outside,
\+ cage(L).

% two positions are the sides of a gate

constraint(6) :-
sides(_,P1,P2),
((\+ position(P1)) ; (\+ position(P2))).

% the positions which form the sides of a gate
% must occupy different locations

constraint(7) :-
sides(_,P1,P2),
loc(P1,L),
loc(P2,L).

B.2. Domain Constraints 183

% no two gates have the same sides

constraint(8) :-
sides(G1,P11,P12),
sides(G2,P21,P22),
G1 @< G2,
(P11 = P21, P12 = P22 ; P11 = P22, P12 = P21).

% two positions are neighbours if they are the sides of a gate

constraint(9) :-
sides(_,P1,P2),
\+ neighbour(P1,P2).

% two positions in different locations are neighbours
% only if they are the sides of a gate

constraint(10) :-
loc(P1,L1),
loc(P2,L2),
P1 @< P2,
L1 \= L2,
\+ sides(_,P1,P2),
\+ sides(_,P2,P1),
neighbour(P1,P2).

% one of the species is human

constraint(11) :-
\+ animal(_,human).

% each animal belongs to exactly one species

constraint(12) :-
animal(A,S1),
animal(A,S2),
S1 \= S2.

% some species are large, some are not

constraint(13) :-
(\+ (animal(_,S),large_species(S))
;
\+ (animal(_,S),\+ large_species(S))).

% adult members of large species are large animals

constraint(14) :-
large_species(S),
animal(A,S),

184 Appendix B. The Zoo World

adult(A),
\+ large_animal(A).

% there is at least one human in each scenario

constraint(15) :-
\+ animal(_,human).

% every animal can only do one action at a time

done_by(move(A), A).
done_by(open(H,_), H).
done_by(close(H,_),H).
done_by(mount(H),H).
done_by(get_off(A,_),A).

constraint(16) :-
happens(C1,V1,T),
V1 \= ff,
V1 \= none,
happens(C2,V2,T),
V2 \= ff,
V2 \= none,
a(C1,V1) \= a(C2,V2),
done_by(C1,A),
done_by(C2,A).

% a human cannot attempt to mount a small animal

constraint(17) :-
happens(mount(_),A,_),
small_animal(A).

% a large human cannot attempt to mount a human

constraint(18) :-
happens(mount(HL),H,_),
animal(H,human),
large_animal(HL).

	Abstract
	Acknowledgements
	Introduction
	Collaborations and Contributions
	Structure of the thesis

	Background and Related Work
	The Action Language C+
	Signatures and Causal Laws
	Action Descriptions to Transition Systems
	Causal Theories
	Action Descriptions to Causal Theories
	Definiteness and Completion
	Abbreviations
	Example
	Queries
	Current Implementation

	The Red and the Green
	Stable Models
	Event Calculus
	Model Checking
	Bounded Model Checking

	Related Work
	Action Descriptions and Extended Logic Programs
	Dependence and Acyclicity
	The Language E
	Comparative Studies

	Efficient Computation of Narratives
	Restrictions to the Language
	Excursus on Dependence
	Action Domains

	Logic Programs
	Signatures
	Laws
	Initial States and Actions
	Axioms
	The Components Together

	Proof
	Consistency and Models
	Implementation
	Queries and Explanatory Traces

	Example---the Farmyard
	Other Measures to Increase Efficiency
	Information Stored
	assert_callterm/5
	caused/5
	Axioms

	Comparison of Implementations
	The Zoo World
	Relation to the Event Calculus
	Summary

	Distant Causation
	Preliminaries
	Times
	Graphical Models
	Run Systems
	Commitments
	Generation of Run Systems
	An Example Generation
	Second Example Generation
	Reduction
	Third Example---Reagan and Gorbachev

	Interaction with nC+
	The Language nC+timed

	Summary

	C+ and Model Checking
	Interlude on FSMs
	First Implementation
	Second Implementation
	Limitations
	Details of the Second Approach
	Queries
	Remarks

	Third Implementation
	Comparison

	Conclusion
	Further Work

	Bibliography
	The Farmyard Resurrection domain
	The Zoo World
	Action Description
	Domain Constraints

